Skip to main content

Advertisement

Log in

NT5E gene and CD38 protein as potential prognostic biomarkers for childhood B-acute lymphoblastic leukemia

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract  

The risk stratification of B-acute lymphoblastic leukemia (B-ALL) is based on clinical and biological factors. However, B-ALL has significant biological and clinical heterogeneity and 50% of B-ALL patients do not have defined prognostic markers. In this sense, the identification of new prognostic biomarkers is necessary. Considering different cohorts of childhood B-ALL patients, gene (DPP4/CD38/ENTPD1/NT5E) and protein (CD38/CD39/CD73) expressions of ectonucleotidases were analyzed in silico and ex vivo and the association with prognosis was established. In univariate analyses, expression of NT5E was significantly associated with worse progression-free survival (PFS) in bone marrow (BM) samples. In multivariate analyses, Kaplan–Meier analysis, and log-rank test, higher NT5E expression predicted unfavorable PFS in BM samples. Considering minimal residual disease (MRD), higher levels of cellularity were associated with the high NT5E expression at day 8 of induction therapy. In addition, we observed that white blood cells (WBC) of childhood B-ALL patients had more CD38 compared to the same cell population of healthy donors (HD). In fact, MRD > 0.1% patients had higher CD38 protein expression on WBC in comparison to HD. Noteworthy, we observed higher CD38 expression on WBC than blasts in MRD > 0.1% patients. We suggest that NT5E gene and CD38 protein expression, of the ectonucleotidases family, could provide interesting prognostic biomarkers for childhood B-ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data are available upon reasonable request.

References

  1. Carroll W, Loh M, Biondi A, Willman C (2011) Childhood leukemia. 29–62. https://doi.org/10.1007/978-3-642-13781-5

  2. Moorman AV (2016) New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica 101:407–416. https://doi.org/10.3324/haematol.2015.141101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roberts KG, Mullighan CG (2015) Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol 12:344–357. https://doi.org/10.1038/nrclinonc.2015.38

    Article  CAS  PubMed  Google Scholar 

  4. Zhang X, Rastogi P, Shah B, Zhang L (2017) B lymphoblastic leukemia/lymphoma: new insights into genetics, molecular aberrations, subclassification and targeted therapy. Oncotarget 8:66728–66741. https://doi.org/10.18632/oncotarget.19271

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hann I, Vora A, Richards S et al (2000) Benefit of intensified treatment for all children with acute lymphoblastic leukaemia: results from MRC UKALL XI and MRC ALL97 randomised trials. Leukemia 14:356–363. https://doi.org/10.1038/sj.leu.2401704

    Article  CAS  PubMed  Google Scholar 

  6. Schultz KR, Pullen DJ, Sather HN et al (2007) Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood 109:926–935. https://doi.org/10.1182/blood-2006-01-024729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carroll WL, Raetz EA (2012) Clinical and laboratory biology of childhood acute lymphoblastic leukemia. J Pediatr 160:10–18. https://doi.org/10.1016/j.jpeds.2011.08.006

    Article  PubMed  Google Scholar 

  8. Bartram J, Patel B, Fielding AK (2020) Monitoring MRD in ALL: methodologies, technical aspects and optimal time points for measurement. Semin Hematol 57:142–148. https://doi.org/10.1053/j.seminhematol.2020.06.003

    Article  PubMed  Google Scholar 

  9. Schuurhuis GJ, Heuser M, Freeman S et al (2018) Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 131:1275–1291. https://doi.org/10.1182/blood-2017-09-801498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garza-Veloz I, Martinez-Fierro ML, Jaime-Perez JC et al (2015) Identification of differentially expressed genes associated with prognosis of B acute lymphoblastic leukemia. Dis Markers 2015:1–11. https://doi.org/10.1155/2015/828145

    Article  CAS  Google Scholar 

  11. Bungaro S, Dell’Orto MC, Zangrando A et al (2009) Integration of genomic and gene expression data of childhood ALL without known aberrations identifies subgroups with specific genetic hallmarks. Genes Chromosom Cancer 48:22–38. https://doi.org/10.1002/gcc.20616

    Article  CAS  PubMed  Google Scholar 

  12. Dawson AJ, Yanofsky R, Vallente R et al (2011) Array comparative genomic hybridization and cytogenetic analysis in pediatric acute leukemias. Curr Oncol 18:e210. https://doi.org/10.3747/co.v18i5.770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yeoh E, Ross ME, Shurtleff SA et al (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1:133–143. https://doi.org/10.1016/S1535-6108(02)00032-6

    Article  CAS  PubMed  Google Scholar 

  14. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483. https://doi.org/10.1007/s00018-007-6497-0

    Article  CAS  PubMed  Google Scholar 

  15. Careta O, Cuevas E, Muñoz-Esquerre M et al (2019) Imbalance in the expression of genes associated with purinergic signalling in the lung and systemic arteries of COPD patients. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-39233-y

    Article  CAS  Google Scholar 

  16. Chang CC, Liu CZ, Cleveland RP (2003) Relative importance of CD38 expression over myeloid-associated markers expression in predicting the clinical course of B-CLL patients. Leuk Lymphoma 44:977–982. https://doi.org/10.1080/1042819031000076990

    Article  CAS  PubMed  Google Scholar 

  17. Zimmermann H (1996) Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 49:589–618. https://doi.org/10.1016/0301-0082(96)00026-3

    Article  CAS  PubMed  Google Scholar 

  18. Yegutkin GG, Henttinen T, Samburski SS et al (2002) The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochem J 367:121–128. https://doi.org/10.1042/BJ20020439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Horenstein AL, Chillemi A, Zaccarello G, et al (2013) A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology 2https://doi.org/10.4161/ONCI.26246

  20. Di Virgilio F, Boeynaems J-M, Robson SC (2009) Extracellular nucleotides as negative modulators of immunity. Curr Opin Pharmacol 9:507–513. https://doi.org/10.1016/j.coph.2009.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abousamra NK, Salah El-Din M, Hamza Elzahaf E, Esmael ME (2015) Ectonucleoside triphosphate diphosphohydrolase-1 (E-NTPDase1/CD39) as a new prognostic marker in chronic lymphocytic leukemia. Leuk Lymphoma 56:113–119. https://doi.org/10.3109/10428194.2014.907893

    Article  CAS  PubMed  Google Scholar 

  22. Lu X, Chen Y, Feng B et al (2013) Expression and clinical significance of CD73 and hypoxia-inducible factor-1α in gastric carcinoma. World J Gastroenterol 19:1912. https://doi.org/10.3748/WJG.V19.I12.1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang B, Song B, Wang X et al (2015) The expression and clinical significance of CD73 molecule in human rectal adenocarcinoma. Tumor Biol 36:5459–5466. https://doi.org/10.1007/s13277-015-3212-x

    Article  CAS  Google Scholar 

  24. Liang P, Yeh B, Li W et al (2017) DPP4/CD26 overexpression in urothelial carcinoma confers an independent prognostic impact and correlates with intrinsic biological aggressiveness. Oncotarget 8:2995–3008. https://doi.org/10.18632/oncotarget.13820

    Article  PubMed  Google Scholar 

  25. Keyhani A, Huh YOO, Jendiroba D et al (2000) Increased CD38 expression is associated with favorable prognosis in adult acute leukemia. Leuk Res 24:153–159. https://doi.org/10.1016/S0145-2126(99)00147-2

    Article  CAS  PubMed  Google Scholar 

  26. Kalina T, Flores-Montero J, Van Der Velden VHJ et al (2012) EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 26:1986–2010. https://doi.org/10.1038/leu.2012.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Therneau TM, Lumley T (2020) Survival analysis; [R package “survival” version 3.1–12]. In: Compr. R Arch. Netw. https://cran.r-project.org/package=survival. Accessed 28 Jul 2020

  28. Iqbal J, Zaidi M (2006) Extracellular NAD+ metabolism modulates osteoclastogenesis. Biochem Biophys Res Commun 349:533–539. https://doi.org/10.1016/j.bbrc.2006.08.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campos-Contreras ADR, Díaz-Muñoz M, Vázquez-Cuevas FG (2020) Purinergic signaling in the hallmarks of cancer. Cells 9:1612. https://doi.org/10.3390/cells9071612

    Article  CAS  PubMed Central  Google Scholar 

  30. Allard B, Beavis PA, Darcy PK, Stagg J (2016) Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol 29:7–16. https://doi.org/10.1016/j.coph.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  31. de Andrade MP, Coutinho-Silva R, Savio LEB (2017) Multifaceted effects of extracellular adenosine triphosphate and adenosine in the tumor–host interaction and therapeutic perspectives. Front Immunol 8:1526. https://doi.org/10.3389/fimmu.2017.01526

    Article  CAS  Google Scholar 

  32. Jiang T, Xu X, Qiao M et al (2018) (2018) Comprehensive evaluation of NT5E/CD73 expression and its prognostic significance in distinct types of cancers. BMC Cancer 181(18):1–10. https://doi.org/10.1186/S12885-018-4073-7

    Article  Google Scholar 

  33. Tripathi A, Lin E, Xie W, et al (2020) Prognostic significance and immune correlates of CD73 expression in renal cell carcinoma. J Immunother Cancer 8https://doi.org/10.1136/jitc-2020-001467

  34. Jeong YM, Cho H, Kim T-M et al (2020) CD73 Overexpression promotes progression and recurrence of papillary thyroid carcinoma. Cancers (Basel) 12:3042. https://doi.org/10.3390/cancers12103042

    Article  CAS  Google Scholar 

  35. Sakhinia E, Farahangpour M, Tholouli E et al (2006) Comparison of gene-expression profiles in parallel bone marrow and peripheral blood samples in acute myeloid leukaemia by real-time polymerase chain reaction. J Clin Pathol 59:1059–1065. https://doi.org/10.1136/jcp.2005.031161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Flotho C, Coustan-Smith E, Pei D et al (2006) Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood 108:1050–1057. https://doi.org/10.1182/blood-2006-01-0322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wieten E, van der Linden-Schrever MBE, Sonneveld E et al (2011) CD73 (5′-nucleotidase) expression has no prognostic value in children with acute lymphoblastic leukemia. Leukemia. https://doi.org/10.1038/leu.2011.174

    Article  PubMed  Google Scholar 

  38. Wang W, Gao L, Li Y et al (2016) The application of CD73 in minimal residual disease monitoring using flow cytometry in B-cell acute lymphoblastic leukemia. Leuk Lymphoma 57:1174–1181. https://doi.org/10.3109/10428194.2015.1070153

    Article  CAS  PubMed  Google Scholar 

  39. Koehler M, Behm F, Hancock M, Pui CH (1993) Expression of activation antigens CD38 and CD71 is not clinically important in childhood acute lymphoblastic leukemia. Leukemia 7(1):41–5 (PMID: 8418378)

    CAS  PubMed  Google Scholar 

  40. C L, DY S, XJ X, et al (2020) High CD38 expression in childhood T-cell acute lymphoblastic leukemia is not associated with prognosis. Cancer Biomark 27:277–284https://doi.org/10.3233/CBM-190946

  41. Morandi F, Horenstein AL, Costa F et al (2018) CD38: a target for immunotherapeutic approaches in multiple myeloma. Front Immunol 0:2722. https://doi.org/10.3389/FIMMU.2018.02722

    Article  Google Scholar 

  42. Sek K, Mølck C, Stewart G et al (2018) Targeting adenosine receptor signaling in cancer immunotherapy. Int J Mol Sci 19:3837. https://doi.org/10.3390/ijms19123837

    Article  CAS  PubMed Central  Google Scholar 

  43. Hammami A, Allard D, Allard B, Stagg J (2019) Targeting the adenosine pathway for cancer immunotherapy. Semin Immunol 42:101304. https://doi.org/10.1016/J.SMIM.2019.101304

    Article  CAS  PubMed  Google Scholar 

  44. Malavasi F, Deaglio S, Funaro A et al (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 88:841–886. https://doi.org/10.1152/physrev.00035.2007

    Article  CAS  PubMed  Google Scholar 

  45. Tembhare R, Sriram H, Khanka T et al (2020) Flow cytometric evaluation of CD38 expression levels in the newly diagnosed T-cell acute lymphoblastic leukemia and the effect of chemotherapy on its expression in measurable residual disease, refractory disease and relapsed disease: an implication for anti-CD38 immunotherapy. J Immunother Cancer 8:630. https://doi.org/10.1136/jitc-2020-000630

    Article  Google Scholar 

  46. Silverman LB, Sallan SE (2003) Newly diagnosed childhood acute lymphoblastic leukemia: update on prognostic factors and treatment. Curr Opin Hematol 10:290–296. https://doi.org/10.1097/00062752-200307000-00007

    Article  PubMed  Google Scholar 

  47. Pui C-H, Campana D, Evans WE (2001) Childhood acute lymphoblastic leukaemia – current status and future perspectives. Lancet Oncol 2:597–607. https://doi.org/10.1016/S1470-2045(01)00516-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by CNPq (PQ no. 302879/2017–0, AMO Battastini grant), FAPERGS (FAPERGS/PQG grant no. 19/2551–0001783-9; ARD grant no. 19/2551–0001269-1 and PRONEX no. 16–2551-0000467–6), and INCT/CNPq/CAPES/ FAPERGS grant no. 465671/2014–4. Fundo de Incentivo a Pesquisa do Hospital de Clínicas de Porto Alegre (project no.: 2018–0401; CAAE no.: 93973218110015327). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Vitória Brum da Silva Nunes, Camila Kehl Dias, Marco Antônio De Bastiani, and Fabrício Figueiró. The first draft of the manuscript was written by Vitória Brum da Silva Nunes and all authors commented on later versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fabrício Figueiró.

Ethics declarations

Ethical approval

The study was conducted in accordance with the 1964 Helsinki Declaration, and the protocol was approved by the Ethics Committee of the Hospital de Clínicas de Porto Alegre (Project number: 2018–0401; CAAE number: 93973218110015327). All guardians of the children provided informed consent.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Nunes, V.B., Dias, C.K., De Bastiani, M.A. et al. NT5E gene and CD38 protein as potential prognostic biomarkers for childhood B-acute lymphoblastic leukemia. Purinergic Signalling 18, 211–222 (2022). https://doi.org/10.1007/s11302-022-09841-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09841-x

Keywords

Navigation