Skip to main content
Log in

Involvement of purinergic P2Y1R in antidepressant-like effects of electroacupuncture treatment on social isolation stress mice

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Depression is a common neuropsychiatric disorder with high incidence and disability. Electroacupuncture (EA) is effective in the treatment of depression. However, the underlying mechanisms are not fully understood. Social isolation stress during post-weaning period can impair purinergic signaling in the brain of rodents and has emerged as a major risk factor for depression. The purpose of this study was to investigate the involvement of P2Y1 receptor (P2Y1R) in the antidepressant-like effects of EA. In this study, C57BL/6 mice were randomly assigned to group-housed (GH) or social isolated (SI) groups at post-natal day 21. After 6 weeks of social isolation, EA was performed on acupoints “Bai-hui” (GV20) and “Yin-tang” (GV29), or non-acupoints for 4 weeks. The SI mice received either intracerebroventricular injection of a selective P2Y1R agonist, MRS2365 (1 nmol); or a selective P2Y1R antagonist, MRS2179 (2 μmol), before and after EA. We found that SI mice exhibited depression-like behaviors accompanied with anxiety-like behaviors. The expressions of P2Y1R were well co-localized with GFAP-positive astrocytes and increased in the prefrontal cortex and hippocampus of SI mice. After treated with MRS2179, the depression-like behaviors of SI mice were attenuated, but not with MRS2365. Meanwhile, we found that EA could attenuate social isolation caused depression- and anxiety-like behaviors, and inhibited the up-regulation of P2Y1R in the prefrontal cortex and hippocampus of SI mice. Notably, the positive effects of EA on depression-like behaviors of SI mice could be reversed by MRS2365, while MRS2365 had no effect on the anxiolytic-like effects of EA. Therefore, we provide new evidence that EA could ameliorate depression- and anxiety-like behaviors in social isolation stress mice, and P2Y1R was involved in the antidepressant-like effects of EA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

Code availability

Not applicable.

References

  1. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England). 2018;392(10159):1789–858. https://doi.org/10.1016/s0140-6736(18)32279-7.

  2. Thapar A, Collishaw S, Pine DS, Thapar AK (2012) Depression in adolescence. Lancet (London, England) 379(9820):1056–1067. https://doi.org/10.1016/s0140-6736(11)60871-4

    Article  PubMed  Google Scholar 

  3. Fava GA, Ruini C, Belaise C (2007) The concept of recovery in major depression. Psychol Med 37(3):307–317. https://doi.org/10.1017/s0033291706008981

    Article  PubMed  Google Scholar 

  4. Conradi HJ, Ormel J, de Jonge P (2011) Presence of individual (residual) symptoms during depressive episodes and periods of remission: a 3-year prospective study. Psychol Med 41(6):1165–1174. https://doi.org/10.1017/s0033291710001911

    Article  CAS  PubMed  Google Scholar 

  5. Dale E, Bang-Andersen B, Sánchez C (2015) Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol 95(2):81–97. https://doi.org/10.1016/j.bcp.2015.03.011

    Article  CAS  PubMed  Google Scholar 

  6. Li Q, Sullivan NR, McAllister CE, Van de Kar LD, Muma NA (2013) Estradiol accelerates the effects of fluoxetine on serotonin 1A receptor signaling. Psychoneuroendocrinology 38(7):1145–1157. https://doi.org/10.1016/j.psyneuen.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  7. Chan YY, Lo WY, Yang SN, Chen YH, Lin JG (2015) The benefit of combined acupuncture and antidepressant medication for depression: a systematic review and meta-analysis. J Affect Disord 176:106–117. https://doi.org/10.1016/j.jad.2015.01.048

    Article  PubMed  Google Scholar 

  8. Tu CH, MacDonald I, Chen YH (2019) The effects of acupuncture on glutamatergic neurotransmission in depression, anxiety, schizophrenia, and Alzheimer’s disease: a review of the literature. Front Psych 10:14. https://doi.org/10.3389/fpsyt.2019.00014

    Article  Google Scholar 

  9. Oh JY, Kim YK, Kim SN, Lee B, Jang JH, Kwon S et al (2018) Acupuncture modulates stress response by the mTOR signaling pathway in a rat post-traumatic stress disorder model. Sci Rep 8(1):11864. https://doi.org/10.1038/s41598-018-30337-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu J, Liang J, Wang JR, Hu L, Tu Y, Guo JY. Acupuncture activates ERK-CREB pathway in rats exposed to chronic unpredictable mild stress. evidence-based complementary and alternative medicine : eCAM. 2013;2013:469765. https://doi.org/10.1155/2013/469765.

  11. Lee MJ, Ryu JS, Won SK, Namgung U, Jung J, Lee SM et al (2019) Effects of acupuncture on chronic stress-induced depression-like behavior and its central neural mechanism. Front Psychol 10:1353. https://doi.org/10.3389/fpsyg.2019.01353

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yun SJ, Park HJ, Yeom MJ, Hahm DH, Lee HJ, Lee EH (2002) Effect of electroacupuncture on the stress-induced changes in brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 318(2):85–88. https://doi.org/10.1016/s0304-3940(01)02492-2

    Article  CAS  PubMed  Google Scholar 

  13. Eshkevari L, Egan R, Phillips D, Tilan J, Carney E, Azzam N et al (2012) Acupuncture at ST36 prevents chronic stress-induced increases in neuropeptide Y in rat. Exp Biol Med (Maywood) 237(1):18–23. https://doi.org/10.1258/ebm.2011.011224

    Article  CAS  PubMed  Google Scholar 

  14. Kwon S, Lee B, Yeom M, Sur BJ, Kim M, Kim ST et al (2012) Modulatory effects of acupuncture on murine depression-like behavior following chronic systemic inflammation. Brain Res 1472:149–160. https://doi.org/10.1016/j.brainres.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  15. Guo X, Pan F, Wang B, Li W, Xia C, Ju Z (2019) Effect of electroacupuncture on mice model of permenopausal depressive disorder. Saudi journal of biological sciences 26(8):2030–2036. https://doi.org/10.1016/j.sjbs.2019.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng Y, He J, Guo L, Yao L, Zheng X, Yang Z et al (2019) Transcriptome analysis on maternal separation rats with depression-related manifestations ameliorated by electroacupuncture. Front Neurosci 13:314. https://doi.org/10.3389/fnins.2019.00314

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jiang H, Zhang X, Wang Y, Zhang H, Li J, Yang X et al (2017) Mechanisms underlying the antidepressant response of acupuncture via PKA/CREB signaling pathway. Neural Plast 2017:4135164. https://doi.org/10.1155/2017/4135164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun Y, Tu Y, Guo Y, Jiang HL, Li YH, Wang Y, et al. [Acupuncture improved depressive behavior by regulating expression of hippocampal apoptosis-related factors in psychological stress-induced depression rats]. Zhen ci yan jiu = Acupuncture research. 2019;44(6):412–8. https://doi.org/10.13702/j.1000-0607.190098.

  19. Lin L, Yu L, Xiang H, Hu X, Yuan X, Zhu H et al (2019) Effects of acupuncture on behavioral stereotypies and brain dopamine system in mice as a model of Tourette syndrome. Front Behav Neurosci 13:239. https://doi.org/10.3389/fnbeh.2019.00239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu A, Tang Y, Zeng Q, Wang X, Tian H, Zhou Y et al (2020) Electroacupuncture enhances cognition by promoting brain glucose metabolism and inhibiting inflammation in the APP/PS1 mouse model of Alzheimer’s disease: a pilot study. J Alzheimers Dis 77(1):387–400. https://doi.org/10.3233/jad-200242

    Article  CAS  PubMed  Google Scholar 

  21. Ding N, Jiang J, Xu A, Tang Y, Li Z (2019) Manual acupuncture regulates behavior and cerebral blood flow in the SAMP8 mouse model of Alzheimer’s disease. Front Neurosci 13:37. https://doi.org/10.3389/fnins.2019.00037

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M et al (2013) Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 19(6):773–777. https://doi.org/10.1038/nm.3162

    Article  CAS  PubMed  Google Scholar 

  23. Krügel U (2016) Purinergic receptors in psychiatric disorders. Neuropharmacology 104:212–225. https://doi.org/10.1016/j.neuropharm.2015.10.032

    Article  CAS  PubMed  Google Scholar 

  24. Krügel U, Spies O, Regenthal R, Illes P, Kittner H (2004) P2 receptors are involved in the mediation of motivation-related behavior. Purinergic Signalling 1(1):21–29. https://doi.org/10.1007/s11302-004-4745-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tang Y, Yin HY, Liu J, Rubini P, Illes P (2019) P2X receptors and acupuncture analgesia. Brain Res Bull 151:144–152. https://doi.org/10.1016/j.brainresbull.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  26. Andrejew R, Paim M, Moritz CEJ, Carreño F, Rates SMK, Elisabetsky E et al (2021) Post-weaning social isolation impairs purinergic signaling in rat brain. Neurochem Int 148:105111. https://doi.org/10.1016/j.neuint.2021.105111

    Article  CAS  PubMed  Google Scholar 

  27. Marsden CA, King MV, Fone KC (2011) Influence of social isolation in the rat on serotonergic function and memory–relevance to models of schizophrenia and the role of 5-HT6 receptors. Neuropharmacology 61(3):400–407. https://doi.org/10.1016/j.neuropharm.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  28. Suyama S, Sunabori T, Kanki H, Sawamoto K, Gachet C, Koizumi S et al (2012) Purinergic signaling promotes proliferation of adult mouse subventricular zone cells. J Neurosci 32(27):9238–9247. https://doi.org/10.1523/jneurosci.4001-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alves M, De Diego GL, Conte G, Jimenez-Mateos EM, D’Orsi B, Sanz-Rodriguez A et al (2019) Context-specific switch from anti- to pro-epileptogenic function of the P2Y(1) receptor in experimental epilepsy. J Neurosci 39(27):5377–5392. https://doi.org/10.1523/jneurosci.0089-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Courtin E, Knapp M (2017) Social isolation, loneliness and health in old age: a scoping review. Health Soc Care Community 25(3):799–812. https://doi.org/10.1111/hsc.12311

    Article  PubMed  Google Scholar 

  31. Domènech-Abella J, Mundó J, Haro JM, Rubio-Valera M (2019) Anxiety, depression, loneliness and social network in the elderly: longitudinal associations from The Irish Longitudinal Study on Ageing (TILDA). J Affect Disord 246:82–88. https://doi.org/10.1016/j.jad.2018.12.043

    Article  PubMed  Google Scholar 

  32. Famitafreshi H, Karimian M (2019) Modulation of catalase, copper and zinc in the hippocampus and the prefrontal cortex in social isolation-induced depression in male rats. Acta Neurobiol Exp 79(2):184–192

    Article  Google Scholar 

  33. Cacioppo JT, Cacioppo S, Capitanio JP, Cole SW (2015) The neuroendocrinology of social isolation. Annu Rev Psychol 66:733–767. https://doi.org/10.1146/annurev-psych-010814-015240

    Article  PubMed  Google Scholar 

  34. Haj-Mirzaian A, Nikbakhsh R, Ramezanzadeh K, Rezaee M, Amini-Khoei H, Haj-Mirzaian A, et al. Involvement of opioid system in behavioral despair induced by social isolation stress in mice. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019;109:938–44. https://doi.org/10.1016/j.biopha.2018.10.144.

  35. Brenes JC, Fornaguera J, Sequeira-Cordero A (2020) Environmental enrichment and physical exercise attenuate the depressive-like effects induced by social isolation stress in rats. Front Pharmacol 11:804. https://doi.org/10.3389/fphar.2020.00804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim JW, Kirkpatrick B (1996) Social isolation in animal models of relevance to neuropsychiatric disorders. Biol Psychiat 40(9):918–922. https://doi.org/10.1016/0006-3223(95)00546-3

    Article  CAS  PubMed  Google Scholar 

  37. Zaletel I, Filipović D, Puškaš N (2017) Hippocampal BDNF in physiological conditions and social isolation. Rev Neurosci 28(6):675–692. https://doi.org/10.1515/revneuro-2016-0072

    Article  CAS  PubMed  Google Scholar 

  38. Zhao J, Tian H, Song H, Wang X, Luo T, Ai L et al (2019) Effect of electroacupuncture on reuptake of serotonin via miRNA-16 expression in a rat model of depression. Evidence-based complementary and alternative medicine : eCAM 2019:7124318. https://doi.org/10.1155/2019/7124318

    Article  PubMed  Google Scholar 

  39. Zhang Zhongfa, Wang Junfeng, Du Guiping, Zhao Xueying, Luo hechun. Application of electroacupuncture at Baihui and Yintang points in Department of Mental Diseases. Chinese Acupuncture and Moxibustion(Zhongguo zhenjiu). 2001;21(10):633–636.

  40. Yue Z, Yaping O, Shuming Z, Hongfeng W (2018) Acupoints compatibility of acupuncture and moxibustion treating depression based on data mining. J Changchun Univ Chin Med 34(1):176–178

    Google Scholar 

  41. Nie J, Wei X, Xu X, Li N, Li Y, Zhao Y et al (2020) Electro-acupuncture alleviates adolescent cocaine exposure-enhanced anxiety-like behaviors in adult mice by attenuating the activities of PV interneurons in PrL. FASEB J 34(9):11913–11924. https://doi.org/10.1096/fj.202000346RR

    Article  CAS  PubMed  Google Scholar 

  42. Zou Y, Yang R, Li L, Xu X, Liang S (2021) Purinergic signaling: a potential therapeutic target for depression and chronic pain. Purinergic Signalling. https://doi.org/10.1007/s11302-021-09801-x

    Article  PubMed  Google Scholar 

  43. Burnstock G (2018) Purine and purinergic receptors. Brain and neuroscience advances 2:2398212818817494. https://doi.org/10.1177/2398212818817494

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bartoli F, Burnstock G, Crocamo C, Carrà G (2020) Purinergic signaling and related biomarkers in depression. Brain Sci 10(3). https://doi.org/10.3390/brainsci10030160

  45. Burnstock G (2001) Purine-mediated signalling in pain and visceral perception. Trends Pharmacol Sci 22(4):182–188. https://doi.org/10.1016/s0165-6147(00)01643-6

    Article  CAS  PubMed  Google Scholar 

  46. Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22(3):238–249. https://doi.org/10.1038/nm.4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Franke H, Krügel U, Grosche J, Heine C, Härtig W, Allgaier C et al (2004) P2Y receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 127(2):431–441. https://doi.org/10.1016/j.neuroscience.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  48. Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 281(41):30684–30696. https://doi.org/10.1074/jbc.M606429200

    Article  CAS  PubMed  Google Scholar 

  49. Kittner H, Franke H, Fischer W, Schultheis N, Krügel U, Illes P (2003) Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology 28(3):435–444. https://doi.org/10.1038/sj.npp.1300043

    Article  CAS  PubMed  Google Scholar 

  50. Delekate A, Füchtemeier M, Schumacher T, Ulbrich C, Foddis M, Petzold GC (2014) Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model. Nat Commun 5:5422. https://doi.org/10.1038/ncomms6422

    Article  PubMed  Google Scholar 

  51. Wong PC, Watson C, Crain EJ (2016) The P2Y1 receptor antagonist MRS2500 prevents carotid artery thrombosis in cynomolgus monkeys. J Thromb Thrombolysis 41(3):514–521. https://doi.org/10.1007/s11239-015-1302-7

    Article  CAS  PubMed  Google Scholar 

  52. Kuboyama K, Harada H, Tozaki-Saitoh H, Tsuda M, Ushijima K, Inoue K (2011) Astrocytic P2Y(1) receptor is involved in the regulation of cytokine/chemokine transcription and cerebral damage in a rat model of cerebral ischemia. J Cereb Blood Flow Metab 31(9):1930–1941. https://doi.org/10.1038/jcbfm.2011.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (82174500, 82004491), China Postdoctoral Science Foundation (2017M612472), and Young Excellent Medical Scholarship of Hubei Province (2020 LJRC011).

Author information

Authors and Affiliations

Authors

Contributions

LY and MX designed the experiments. LY conducted the EA treatment and performed the experiments. JH and HZ performed the data analysis. LY wrote the manuscript. YW added the experimental data and GC mainly takes charge of checking format and grammar errors in the revised manuscript. All authors helped revise the manuscript and approved the final manuscript.

Corresponding authors

Correspondence to Jiahuan Hao or Minjie Xie.

Ethics declarations

Ethical approval

The experimental procedure was approved by the Animal Ethics Committee of Tongji Hospital, Huazhong University of Science and Technology.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

Lingling Yu declares that she has no conflict of interest.

Wang Yao declares that he has no conflict of interest.

Hong Zhang declares that he has no conflict of interest.

Man Li declares that she has no conflict of interest.

Chen Guang declares that he has no conflict of interest.

Jiahuan Hao declares that he has no conflict of interest.

Minjie Xie declares that she has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 7.41 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Wang, Y., Zhang, H. et al. Involvement of purinergic P2Y1R in antidepressant-like effects of electroacupuncture treatment on social isolation stress mice. Purinergic Signalling 19, 55–68 (2023). https://doi.org/10.1007/s11302-021-09827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09827-1

Keywords

Navigation