Skip to main content

Advertisement

Log in

Purinergic signaling: a potential therapeutic target for depression and chronic pain

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The comorbid mechanism of depression and chronic pain has been a research hotspot in recent years. Until now, the role of purinergic signals in the comorbid mechanism of depression and chronic pain has not been fully understood. This review mainly summarizes the research results published in PubMed during the past 5 years and concludes that purinergic signaling is a potential therapeutic target for comorbid depression and chronic pain, and the purinergic receptors A1, A2A, P2X3, P2X4, and P2X7and P2Y6, P2Y1, and P2Y12 may be important factors. The main potential pathways are as follows: A1 receptor-related G protein-dependent activation of introverted K+ channels (GIRKs), A2A receptor-related effects on the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and MAPK/nuclear factor-κB (NF-κB) pathways, P2X3 receptor-related effects on dorsal root ganglia (DRG) excitability, P2X4 receptor-related effects on proinflammatory cytokines and inflammasome activation, P2X7 receptor-related effects on ion channels, the NLRP3 inflammasome and brain-derived neurotrophic factor (BDNF), and P2Y receptor-related effects on the phospholipase C (PLC)/inositol triphosphate (IP3)/Ca2+ signaling pathway. We hope that the conclusions of this review will provide key ideas for future research on the role of purinergic signaling in the comorbid mechanism of depression and chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Suleman R, Tucker BV, Dursun SM, Demas ML (2021) The neurostimulation of the brain in depression trial: protocol for a randomized controlled trial of transcranial direct current stimulation in treatment-resistant depression. JMIR Res Protoc 10(3):e22805. https://doi.org/10.2196/22805

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huang Y, Wang Y, Wang H, Liu Z, Yu X, Yan J, Yu Y, Kou C, Xu X, Lu J, Wang Z, He S, Xu Y, He Y, Li T, Guo W, Tian H, Xu G, Xu X, Ma Y, Wang L, Wang L, Yan Y, Wang B, Xiao S, Zhou L, Li L, Tan L, Zhang T, Ma C, Li Q, Ding H, Geng H, Jia F, Shi J, Wang S, Zhang N, Du X, Du X, Wu Y (2019) Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry 6(3):211–224. https://doi.org/10.1016/S2215-0366(18)30511-X

    Article  PubMed  Google Scholar 

  3. Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, Cohen M, Evers S, Finnerup NB, First MB, Giamberardino MA, Kaasa S, Korwisi B, Kosek E, Lavand’homme P, Nicholas M, Perrot S, Scholz J, Schug S, Smith BH, Svensson P, Vlaeyen JWS, Wang SJ (2019) Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 160(1):19–27. https://doi.org/10.1097/j.pain.0000000000001384

    Article  PubMed  Google Scholar 

  4. Wohleb ES (2016) Neuron-microglia interactions in mental health disorders: “For Better, and For Worse.” Front Immunol 7:544. https://doi.org/10.3389/fimmu.2016.00544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee J, Bae JY, Lee CJ, Bae YC (2018) Electrophysiological evidence for functional astrocytic P2X3 receptors in the mouse trigeminal caudal nucleus. Exp Neurobiol 27(2):88–93. https://doi.org/10.5607/en.2018.27.2.88

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mills SEE, Nicolson KP, Smith BH (2019) Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth 123(2):e273–e283. https://doi.org/10.1016/j.bja.2019.03.023

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abbracchio MP (2021) The history of the Purine Club: a tribute to Prof. Geoffrey Burnstock. Purinergic Signal 17(1):127–134. https://doi.org/10.1007/s11302-020-09749-4

    Article  CAS  Google Scholar 

  8. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24(3):509–581

    CAS  PubMed  Google Scholar 

  9. Burnstock G (2017) Purinergic signalling: therapeutic developments. Front Pharmacol 8:661. https://doi.org/10.3389/fphar.2017.00661

    Article  CAS  PubMed  Google Scholar 

  10. Alves M, Smith J, Engel T (2019) Differential expression of the metabotropic P2Y receptor family in the cortex following status epilepticus and neuroprotection via P2Y1 antagonism in mice. Front Pharmacol 10:1558. https://doi.org/10.3389/fphar.2019.01558

    Article  CAS  PubMed  Google Scholar 

  11. Ortiz R, Ulrich H, Zarate CA Jr, Machado-Vieira R (2015) Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics. Prog Neuropsychopharmacol Biol Psychiatry 57:117–31. https://doi.org/10.1016/j.pnpbp.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, W.J., H.L. Luo, and Z.M. Zhu (2020) The role of P2X4 receptors in chronic pain: a potential pharmacological target. Biomed Pharmacother 129: 110447. https://doi.org/10.1016/j.biopha.2020.110447

  13. Trang, M., G. Schmalzing, C.E. Muller, and F. Markwardt (2020) Dissection of P2X4 and P2X7 receptor current components in BV-2 microglia. Int J Mol Sci 21 (22). https://doi.org/10.3390/ijms21228489

  14. Kyrargyri V, Madry C, Rifat A, Arancibia-Carcamo IL, Jones SP, Chan VTT, Xu Y, Robaye B, Attwell D (2020) P2Y13 receptors regulate microglial morphology, surveillance, and resting levels of interleukin 1beta release. Glia 68(2):328–344. https://doi.org/10.1002/glia.23719

    Article  PubMed  Google Scholar 

  15. Lalo U, Bogdanov A, Pankratov Y (2019) Age- and experience-related plasticity of ATP-mediated signaling in the neocortex. Front Cell Neurosci 13:242. https://doi.org/10.3389/fncel.2019.00242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, D.S. and J.E. Kim (2020) P2 x 7 Receptor inhibits astroglial autophagy via regulating FAK- and PHLPP1/2-mediated AKT-S473 phosphorylation following kainic acid-induced seizures. Int J Mol Sci 21 (18). https://doi.org/10.3390/ijms21186476

  17. Zhou F, Liu X, Gao L, Zhou X, Cao Q, Niu L, Wang J, Zuo D, Li X, Yang Y, Hu M, Yu Y, Tang R, Lee BH, Choi BW, Wang Y, Izumiya Y, Xue M, Zheng K, Gao D (2019) HIV-1 Tat enhances purinergic P2Y4 receptor signaling to mediate inflammatory cytokine production and neuronal damage via PI3K/Akt and ERK MAPK pathways. J Neuroinflammation 16(1):71. https://doi.org/10.1186/s12974-019-1466-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kinoshita M, Hirayama Y, Fujishita K, Shibata K, Shinozaki Y, Shigetomi E, Takeda A, Le HPN, Hayashi H, Hiasa M, Moriyama Y, Ikenaka K, Tanaka KF, Koizumi S (2018) Anti-depressant fluoxetine reveals its therapeutic effect via astrocytes. EBioMedicine 32:72–83. https://doi.org/10.1016/j.ebiom.2018.05.036

    Article  PubMed  PubMed Central  Google Scholar 

  19. Quintas C, Vale N, Goncalves J, Queiroz G (2018) Microglia P2Y13 receptors prevent astrocyte proliferation mediated by P2Y1 receptors. Front Pharmacol 9:418. https://doi.org/10.3389/fphar.2018.00418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR (2020) Neuroinflammation, pain and depression: an overview of the main findings. Front Psychol 11:1825. https://doi.org/10.3389/fpsyg.2020.01825

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38(10):637–658. https://doi.org/10.1016/j.tins.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  22. Ji RR, Xu ZZ, Gao YJ (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 13(7):533–48. https://doi.org/10.1038/nrd4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fritz BM, Yin F, Atwood BK (2021) Input-selective adenosine A1 receptor-mediated synaptic depression of excitatory transmission in dorsal striatum. Sci Rep 11(1):6345. https://doi.org/10.1038/s41598-021-85513-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Borea PA, Gessi S, Merighi S, Varani K (2016) Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol Sci 37(6):419–434. https://doi.org/10.1016/j.tips.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  25. Serchov T, Clement HW, Schwarz MK, Iasevoli F, Tosh DK, Idzko M, Jacobson KA, de Bartolomeis A, Normann C, Biber K, van Calker D (2015) Increased signaling via adenosine A1 receptors, sleep deprivation, imipramine, and ketamine inhibit depressive-like behavior via induction of Homer1a. Neuron 87(3):549–62. https://doi.org/10.1016/j.neuron.2015.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Akiyama Y, Luo Y, Hanno PM, Maeda D, Homma Y (2020) Interstitial cystitis/bladder pain syndrome: the evolving landscape, animal models and future perspectives. Int J Urol 27(6):491–503. https://doi.org/10.1111/iju.14229

    Article  PubMed  PubMed Central  Google Scholar 

  27. Flajolet M, Wang Z, Futter M, Shen W, Nuangchamnong N, Bendor J, Wallach I, Nairn AC, Surmeier DJ, Greengard P (2008) FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat Neurosci 11(12):1402–9. https://doi.org/10.1038/nn.2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ko IG, Jin JJ, Hwang L, Kim SH, Kim CJ, Won KY, Na YG, Kim KH, Kim SJ (2021) Adenosine A2A receptor agonist polydeoxyribonucleotide alleviates interstitial cystitis-induced voiding dysfunction by suppressing inflammation and apoptosis in rats. J Inflamm Res 14:367–378. https://doi.org/10.2147/JIR.S287346

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hamilton LJ, Walker M, Pattabiraman M, Zhong HA, Luedtke B, Chandra S (2021) Novel curcumin analog (cis-trans curcumin) as ligand to adenosine receptors A2A and A2B: potential for therapeutics. Pharmacol Res 165:105410. https://doi.org/10.1016/j.phrs.2020.105410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guida F, Luongo L, Marmo F, Romano R, Iannotta M, Napolitano F, Belardo C, Marabese I, D’Aniello A, De Gregorio D, Rossi F, Piscitelli F, Lattanzi R, de Bartolomeis A, Usiello A, Di Marzo V, de Novellis V, Maione S (2015) Palmitoylethanolamide reduces pain-related behaviors and restores glutamatergic synapses homeostasis in the medial prefrontal cortex of neuropathic mice. Mol Brain 8:47. https://doi.org/10.1186/s13041-015-0139-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohtori, S., K. Takahashi, H. Moriya, and R.R. Myers (2004) TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine (Phila Pa 1976) 29 (10): 1082–8. https://doi.org/10.1097/00007632-200405150-00006

  32. Koizumi M, Asano S, Furukawa A, Hayashi Y, Hitomi S, Shibuta I, Hayashi K, Kato F, Iwata K, Shinoda M (2021) P2X3 receptor upregulation in trigeminal ganglion neurons through TNFalpha production in macrophages contributes to trigeminal neuropathic pain in rats. J Headache Pain 22(1):31. https://doi.org/10.1186/s10194-021-01244-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guan S, Shen Y, Ge H, Xiong W, He L, Liu L, Yin C, Wei X, Gao Y (2019) Dihydromyricetin alleviates diabetic neuropathic pain and depression comorbidity symptoms by inhibiting P2X7 receptor. Front Psychiatry 10:770. https://doi.org/10.3389/fpsyt.2019.00770

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang X, Chen Y, Wang C, Huang LY (2007) Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci U S A 104(23):9864–9. https://doi.org/10.1073/pnas.0611048104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ford AP (2012) In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization. Purinergic Signal 8(Suppl 1):3–26. https://doi.org/10.1007/s11302-011-9271-6

    Article  CAS  PubMed  Google Scholar 

  36. Morice, A.H., M.M. Kitt, A.P. Ford, A.M. Tershakovec, W.C. Wu, K. Brindle, R. Thompson, S. Thackray-Nocera, and C. Wright (2019) The effect of gefapixant, a P2X3 antagonist, on cough reflex sensitivity: a randomised placebo-controlled study. Eur Respir J 54 (1). https://doi.org/10.1183/13993003.00439-2019

  37. Wang Y, Mackes J, Chan S, Haughey NJ, Guo Z, Ouyang X, Furukawa K, Ingram DK, Mattson MP (2006) Impaired long-term depression in P2X3 deficient mice is not associated with a spatial learning deficit. J Neurochem 99(5):1425–34. https://doi.org/10.1111/j.1471-4159.2006.04198.x

    Article  CAS  PubMed  Google Scholar 

  38. Wang M, Cai X, Wang Y, Li S, Wang N, Sun R, Xing J, Liang S, Liu S (2020) Astragalin alleviates neuropathic pain by suppressing P2X4-mediated signaling in the dorsal root ganglia of rats. Front Neurosci 14:570831. https://doi.org/10.3389/fnins.2020.570831

    Article  PubMed  Google Scholar 

  39. Li L, Zou Y, Liu B, Yang R, Yang J, Sun M, Li Z, Xu X, Li G, Liu S, Greffrath W, Treede RD, Li G, Liang S (2020) Contribution of the P2X4 receptor in rat hippocampus to the comorbidity of chronic pain and depression. ACS Chem Neurosci 11(24):4387–4397. https://doi.org/10.1021/acschemneuro.0c00623

    Article  CAS  PubMed  Google Scholar 

  40. Yu Y, Feng L, Li J, Lan X, L. A, X. Lv, M. Zhang, and L. Chen, (2017) The alteration of autophagy and apoptosis in the hippocampus of rats with natural aging-dependent cognitive deficits. Behav Brain Res 334:155–162. https://doi.org/10.1016/j.bbr.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  41. Xie L, Gu Z, Liu H, Jia B, Wang Y, Cao M, Song R, Zhang Z, Bian Y (2020) The anti-depressive effects of hesperidin and the relative mechanisms based on the NLRP3 inflammatory signaling pathway. Front Pharmacol 11:1251. https://doi.org/10.3389/fphar.2020.01251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang H, Guo W, Liu H, Zeng R, Lu M, Chen Z, Xiao Q (2013) Inhibition of inflammatory mediator release from microglia can treat ischemic/hypoxic brain injury. Neural Regen Res 8(13):1157–68. https://doi.org/10.3969/j.issn.1673-5374.2013.13.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen Y, Guan S, Ge H, Xiong W, He L, Liu L, Yin C, Liu H, Li G, Xu C, Xu H, Liu S, Li G, Liang S, Gao Y (2018) Effects of palmatine on rats with comorbidity of diabetic neuropathic pain and depression. Brain Res Bull 139:56–66. https://doi.org/10.1016/j.brainresbull.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  44. Chu YX, Zhang Y, Zhang YQ, Zhao ZQ (2010) Involvement of microglial P2X7 receptors and downstream signaling pathways in long-term potentiation of spinal nociceptive responses. Brain Behav Immun 24(7):1176–89. https://doi.org/10.1016/j.bbi.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  45. Yue N, Huang H, Zhu X, Han Q, Wang Y, Li B, Liu Q, Wu G, Zhang Y, Yu J (2017) Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation 14(1):102. https://doi.org/10.1186/s12974-017-0865-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mehta N, Kaur M, Singh M, Chand S, Vyas B, Silakari P, Bahia MS, Silakari O (2014) Purinergic receptor P2X(7): a novel target for anti-inflammatory therapy. Bioorg Med Chem 22(1):54–88. https://doi.org/10.1016/j.bmc.2013.10.054

    Article  CAS  PubMed  Google Scholar 

  47. Ribeiro DE, Muller HK, Elfving B, Eskelund A, Joca SR, Wegener G (2019) Antidepressant-like effect induced by P2X7 receptor blockade in FSL rats is associated with BDNF signalling activation. J Psychopharmacol 33(11):1436–1446. https://doi.org/10.1177/0269881119872173

    Article  CAS  PubMed  Google Scholar 

  48. Kuan YH, Shih HC, Shyu BC (2018) Involvement of P2X7 receptors and BDNF in the pathogenesis of central poststroke pain. Adv Exp Med Biol 1099:211–227. https://doi.org/10.1007/978-981-13-1756-9_18

    Article  CAS  PubMed  Google Scholar 

  49. Glaser T, Andrejew R, Oliveira-Giacomelli A, Ribeiro DE, Bonfim Marques L, Ye Q, Ren WJ, Semyanov A, Illes P, Tang Y, Ulrich H (2020) Purinergic receptors in basal ganglia diseases: shared molecular mechanisms between Huntington’s and Parkinson’s disease. Neurosci Bull 36(11):1299–1314. https://doi.org/10.1007/s12264-020-00582-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iqubal A, Ahmed M, Iqubal MK, Pottoo FH, Haque SE (2020) Polyphenols as potential therapeutics for pain and inflammation in spinal cord injury. Curr Mol Pharmacol. https://doi.org/10.2174/1874467213666201223111743

    Article  Google Scholar 

  51. Magni G, Ceruti S (2013) P2Y purinergic receptors: new targets for analgesic and antimigraine drugs. Biochem Pharmacol 85(4):466–77. https://doi.org/10.1016/j.bcp.2012.10.027

    Article  CAS  PubMed  Google Scholar 

  52. Malin SA, Molliver DC (2010) Gi- and Gq-coupled ADP (P2Y) receptors act in opposition to modulate nociceptive signaling and inflammatory pain behavior. Mol Pain 6:21. https://doi.org/10.1186/1744-8069-6-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rajani V, Zhang Y, Jalubula V, Rancic V, SheikhBahaei S, Zwicker JD, Pagliardini S, Dickson CT, Ballanyi K, Kasparov S, Gourine AV, Funk GD (2018) Release of ATP by pre-Botzinger complex astrocytes contributes to the hypoxic ventilatory response via a Ca(2+) -dependent P2Y1 receptor mechanism. J Physiol 596(15):3245–3269. https://doi.org/10.1113/JP274727

    Article  CAS  PubMed  Google Scholar 

  54. Chen Y, Zhang X, Wang C, Li G, Gu Y, Huang LY (2008) Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. Proc Natl Acad Sci U S A 105(43):16773–8. https://doi.org/10.1073/pnas.0801793105

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xu X, Liu B, Yang J, Zou Y, Sun M, Li Z, Li L, Yang R, Zou L, Li G, Liu S, Li G, Liang S (2020) Glucokinase in stellate ganglia cooperates with P2X3 receptor to develop cardiac sympathetic neuropathy in type 2 diabetes rats. Brain Res Bull 165:290–297. https://doi.org/10.1016/j.brainresbull.2020.10.004

    Article  CAS  PubMed  Google Scholar 

  56. Mikuzuki L, Saito H, Katagiri A, Okada S, Sugawara S, Kubo A, Ohara K, Lee J, Toyofuku A, Iwata K (2017) Phenotypic change in trigeminal ganglion neurons associated with satellite cell activation via extracellular signal-regulated kinase phosphorylation is involved in lingual neuropathic pain. Eur J Neurosci 46(6):2190–2202. https://doi.org/10.1111/ejn.13667

    Article  PubMed  Google Scholar 

  57. Amadio S, Parisi C, Montilli C, Carrubba AS, Apolloni S, Volonte C (2014) P2Y(12) receptor on the verge of a neuroinflammatory breakdown. Mediators Inflamm 2014:975849. https://doi.org/10.1155/2014/975849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Inoue K (2017) Purinergic signaling in microglia in the pathogenesis of neuropathic pain. Proc Jpn Acad Ser B Phys Biol Sci 93(4):174–182. https://doi.org/10.2183/pjab.93.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Walker AK, Kavelaars A, Heijnen CJ, Dantzer R (2014) Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev 66(1):80–101. https://doi.org/10.1124/pr.113.008144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Popiolek-Barczyk K, Mika J (2016) Targeting the microglial signaling pathways: new insights in the modulation of neuropathic pain. Curr Med Chem 23(26):2908–2928. https://doi.org/10.2174/0929867323666160607120124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Long T, He W, Pan Q, Zhang S, Zhang D, Qin G, Chen L, Zhou J (2020) Microglia P2X4R-BDNF signalling contributes to central sensitization in a recurrent nitroglycerin-induced chronic migraine model. J Headache Pain 21(1):4. https://doi.org/10.1186/s10194-019-1070-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu X, Dong Y, Jin X, Zhang C, Zhang T, Zhao J, Shi J, Li J (2017) The novel and potent anti-depressive action of triptolide and its influences on hippocampal neuroinflammation in a rat model of depression comorbidity of chronic pain. Brain Behav Immun 64:180–194. https://doi.org/10.1016/j.bbi.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  63. Zhu C, Xu Q, Mao Z, Lin N (2018) The Chinese medicine Wu-Tou decoction relieves neuropathic pain by inhibiting hippocampal microglia activation. Sci Rep 8(1):12292. https://doi.org/10.1038/s41598-018-30006-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y (2021) From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 6(1):162. https://doi.org/10.1038/s41392-021-00553-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zarrinmayeh H, Territo PR (2020) Purinergic receptors of the central nervous system: biology, PET ligands, and their applications. Mol Imaging 19:1536012120927609. https://doi.org/10.1177/1536012120927609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Illes P, Verkhratsky A, Tang Y (2019) Pathological ATPergic signaling in major depression and bipolar disorder. Front Mol Neurosci 12:331. https://doi.org/10.3389/fnmol.2019.00331

    Article  CAS  PubMed  Google Scholar 

  67. Ribeiro, D.E., A.L. Roncalho, T. Glaser, H. Ulrich, G. Wegener, and S. Joca (2019) P2X7 receptor signaling in stress and depression. Int J Mol Sci 20 (11). https://doi.org/10.3390/ijms20112778

Download references

Funding

This work was supported by grants (Nos. 81861138042, 81870574, 81570735, and 31560276) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangdong Liang.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Yang, R., Li, L. et al. Purinergic signaling: a potential therapeutic target for depression and chronic pain. Purinergic Signalling 19, 163–172 (2023). https://doi.org/10.1007/s11302-021-09801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09801-x

Keywords

Navigation