Skip to main content
Log in

Guanosine, a guanine-based nucleoside relaxed isolated corpus cavernosum from mice through cGMP accumulation

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

In corpus cavernosum (CC), guanosine triphosphate (GTP) is converted into cyclic guanosine monophosphate (cGMP) to induce erection. The action of cGMP is terminated by phosphodiesterases and efflux transporters, which pump cGMP out of the cell. The nucleotides, GTP, and cGMP were detected in the extracellular space, and their hydrolysis lead to the formation of intermediate products, among them guanosine. Therefore, our study aims to pharmacologically characterize the effect of guanosine in isolated CC from mice. The penis was isolated and functional and biochemical analyses were carried out. The guanine-based nucleotides GTP, guanosine diphosphate, guanosine monophosphate, and cGMP relaxed mice corpus cavernosum, but the relaxation (90.7 ± 12.5%) induced by guanosine (0.000001–1 mM) was greater than that of the nucleotides (~ 45%, P < 0.05). Guanosine-induced relaxation was not altered in the presence of adenosine type 2A and 2B receptor antagonists. No augment was observed in the intracellular levels of cyclic adenosine monophosphate in tissues stimulated with guanosine. Inhibitors of nitric oxide synthase (L-NAME, 100 μM) and soluble guanylate cyclase (ODQ, 10 μM) produced a significant reduction in guanosine-induced relaxation in all concentrations studied, while in the presence of tadalafil (300 nM), a significant increase was observed. Pre-incubation of guanosine (100 μM) produced a 6.6-leftward shift in tadalafil-induced relaxation. The intracellular levels of cGMP were greater when CC was stimulated with guanosine. Inhibitors of ecto-nucleotidases and xanthine oxidase did not interfere in the response induced by guanosine. In conclusion, our study shows that guanosine relaxes mice CC and opens the possibility to test its role in models of erectile dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

ADP:

Adenosine diphosphate

ARL 67156:

6-N,N-Diethyl-β-γ-dibromomethylene-D-adenosine-5′-triphosphate

ATP:

Adenosine triphosphate

cAMP:

Cyclic adenosine monophosphate

CC:

Corpus cavernosum

CD39:

Ecto-NTPase

CD73:

Ecto-5′-nucleotidase

cGMP:

Cyclic guanosine monophosphate

DPCPX:

1,3-Dipropyl-8-cyclopentylxanthine

ENT 1/2:

Nucleoside transporters type 1 and 2

GDP:

Guanosine diphosphate

GMP:

Guanosine monophosphate

GTP:

Guanosine triphosphate

L-NAME:

Nω-Nitro-L-arginine methyl ester

MRP4/MRP5:

Multidrug resistance proteins type 4 and 5

MRS 1754:

8-[4-[((4-Cyanophenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine

NBTI:

S-(4-Nitrobenzyl)-6-thioinosine

NECA:

5′-(N-Ethylcarboxamido)adenosine

NF-kB:

Kappa beta nuclear factor

NO:

Nitric oxide

NOS:

Nitric oxide synthase

ODQ:

1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one

OGD:

Oxygen/glucose deprivation

PDE5:

Phosphodiesterase 5

sGC:

Soluble guanylate cyclase

SNP:

Sodium nitroprusside

ZM 241385:

4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol

References

  1. Champion HC, Bivalacqua TJ, Takimoto E, Kass DA, Burnett AL (2005) Phosphodiesterase-5A dysregulation in penile erectile tissue is a mechanism of priapism. Proc Natl Acad Sci U S A 102(5):1661–1666

    Article  CAS  Google Scholar 

  2. Adderley SP, Joshi CN, Martin DN, Tulis DA (2012) Phosphodiesterases regulate BAY 41-2272-induced VASP phosphorylation in vascular smooth muscle cells. Front Pharmacol 3:10

    Article  CAS  Google Scholar 

  3. Mendes-Silverio CB, Lescano CH, Zaminelli T, Sollon C, Anhê GF, Antunes E, Mónica FZ (2018) Activation of soluble guanylyl cyclase with inhibition of multidrug resistance protein inhibitor-4 (MRP4) as a new antiplatelet therapy. Biochem Pharmacol 152:165–173

    Article  CAS  Google Scholar 

  4. Borst P, de Wolf C, van de Wetering K (2007) Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch 453(5):661–673

    Article  CAS  Google Scholar 

  5. Bertollotto GM, de Oliveira MG, Alexandre EC, Calmasini FB, Passos GR, Antunes E, Mónica FZ (2018) Inhibition of multidrug resistance proteins by MK 571 enhances bladder, prostate, and urethra relaxation through cAMP or cGMP accumulation. J Pharmacol Exp Ther 367(1):138–146

    Article  CAS  Google Scholar 

  6. Boydens C, Pauwels B, Vanden Daele L, Van de Voorde J (2017) Inhibition of cyclic GMP export by multidrug resistance protein 4: a new strategy to treat erectile dysfunction? J Sex Med 14(4):502–509

    Article  Google Scholar 

  7. Lanznaster D, Dal-Cim T, Piermartiri TCB, Tasca CI (2016) Guanosine: a neuromodulator with therapeutic potential in brain disorders. Aging Dis 7(5):657–679

    Article  Google Scholar 

  8. Burnstock G (2014) Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 10(1):103–155

    Article  CAS  Google Scholar 

  9. Burnstock G (2015) Blood cells: an historical account of the roles of purinergic signalling. Purinergic Signal 11(4):411–434

    Article  CAS  Google Scholar 

  10. Tostes RC, Giachini FR, Carneiro FS, Leite R, Inscho EW, Webb RC (2007) Determination of adenosine effects and adenosine receptors in murine corpus cavernosum. J Pharmacol Exp Ther 322(2):678–685

    Article  CAS  Google Scholar 

  11. Fuentes E, Alarcón M, Astudillo L, Valenzuela C, Gutiérrez M, Palomo I (2013) Protective mechanisms of guanosine from Solanum lycopersicum on agonist-induced platelet activation: role of sCD40L. Molecules. 18(7):8120–8135

    Article  CAS  Google Scholar 

  12. Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140(1):1–22

    Article  CAS  Google Scholar 

  13. Valen G, Owall A, Takeshima S, Goiny M, Ungerstedt U, Vaage J (2004) Metabolic changes induced by ischemia and cardioplegia: a study employing cardiac microdialysis in pigs. Eur J Cardiothorac Surg 25(1):69–75

    Article  Google Scholar 

  14. Ciccarelli R, Di Iorio P, Giuliani P, D'Alimonte I, Ballerini P, Caciagli F et al (1999) Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglycemia. Glia 25(1):93–98

    Article  CAS  Google Scholar 

  15. Di Liberto V, Mudò G, Garozzo R, Frinchi M, Fernandez-Dueñas V, Di Iorio P et al (2016) The guanine-based purinergic system: the tale of an orphan Neuromodulation. Front Pharmacol 7:158

    Article  CAS  Google Scholar 

  16. Tasca CI, Lanznaster D, Oliveira KA, Fernández-Dueñas V, Ciruela F (2018) Neuromodulatory effects of guanine-based purines in health and disease. Front Cell Neurosci 12:376

    Article  CAS  Google Scholar 

  17. Thomaz DT, Dal-Cim TA, Martins WC, Cunha MP, Lanznaster D, de Bem AF, Tasca CI (2016) Guanosine prevents nitroxidative stress and recovers mitochondrial membrane potential disruption in hippocampal slices subjected to oxygen/glucose deprivation. Purinergic Signal 12(4):707–718

    Article  CAS  Google Scholar 

  18. Ramos DB, Muller GC, Rocha GB, Dellavia GH, Almeida RF, Pettenuzzo LF et al (2016) Intranasal guanosine administration presents a wide therapeutic time window to reduce brain damage induced by permanent ischemia in rats. Purinergic Signal 12(1):149–159

    Article  CAS  Google Scholar 

  19. Dal-Cim T, Martins WC, Santos AR, Tasca CI (2011) Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca2+−activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience 183:212–220

    Article  CAS  Google Scholar 

  20. Dal-Cim T, Ludka FK, Martins WC, Reginato C, Parada E, Egea J, López MG, Tasca CI (2013) Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J Neurochem 126(4):437–450

    Article  CAS  Google Scholar 

  21. Molz S, Dal-Cim T, Budni J, Martín-de-Saavedra MD, Egea J, Romero A, del Barrio L, Rodrigues ALS, López MG, Tasca CI (2011) Neuroprotective effect of guanosine against glutamate-induced cell death in rat hippocampal slices is mediated by the phosphatidylinositol-3 kinase/Akt/ glycogen synthase kinase 3β pathway activation and inducible nitric oxide synthase inhibition. J Neurosci Res 89(9):1400–1408

    Article  CAS  Google Scholar 

  22. Dal-Cim T, Martins WC, Thomaz DT, Coelho V, Poluceno GG, Lanznaster D, Vandresen-Filho S, Tasca CI (2016) Neuroprotection promoted by guanosine depends on glutamine synthetase and glutamate transporters activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurotox Res 29(4):460–468

    Article  CAS  Google Scholar 

  23. Vuorinen P, Pörsti I, Metsä-Ketelä T, Manninen V, Vapaatalo H, Laustiola KE (1992) Endothelium-dependent and -independent effects of exogenous ATP, adenosine, GTP and guanosine on vascular tone and cyclic nucleotide accumulation of rat mesenteric artery. Br J Pharmacol 105(2):279–284

    Article  CAS  Google Scholar 

  24. Fuentes F, Alarcón M, Badimon L, Fuentes M, Klotz KN, Vilahur G, Kachler S, Padró T, Palomo I, Fuentes E (2017) Guanosine exerts antiplatelet and antithrombotic properties through an adenosine-related cAMP-PKA signaling. Int J Cardiol 248:294–300

    Article  Google Scholar 

  25. Dobrachinski F, Gerbatin RR, Sartori G, Golombieski RM, Antoniazzi A, Nogueira CW, et al. (2018) Guanosine attenuates behavioral deficits after traumatic brain injury by modulation of adenosinergic receptors. Mol Neurobiol

  26. Traversa U, Bombi G, Di Iorio P, Ciccarelli R, Werstiuk ES, Rathbone MP (2002) Specific [(3)H]-guanosine binding sites in rat brain membranes. Br J Pharmacol 135(4):969–976

    Article  CAS  Google Scholar 

  27. Volpini R, Marucci G, Buccioni M, Dal Ben D, Lambertucci C, Lammi C et al (2011) Evidence for the existence of a specific g protein-coupled receptor activated by guanosine. Chem Med Chem 6(6):1074–1080

    Article  CAS  Google Scholar 

  28. Decker H, Piermartiri TCB, Nedel CB, Romão LF, Francisco SS, Dal-Cim T, Boeck CR, Moura-Neto V, Tasca CI (2019) Guanosine and GMP increase the number of granular cerebellar neurons in culture: dependence on adenosine A. Purinergic Signal 15:439–450

    Article  CAS  Google Scholar 

  29. Dobrachinski F, Gerbatin RR, Sartori G, Golombieski RM, Antoniazzi A, Nogueira CW, Royes LF, Fighera MR, Porciúncula LO, Cunha RA, Soares FAA (2019) Guanosine attenuates behavioral deficits after traumatic brain injury by modulation of adenosinergic receptors. Mol Neurobiol 56(5):3145–3158

    Article  CAS  Google Scholar 

  30. Vuorinen P, Laustiola KE (1992) Exogenous GTP increases cyclic GMP and inhibits thrombin-induced aggregation of washed human platelets: comparison with ATP, adenosine and guanosine. Pharmacol Toxicol 71(4):289–293

    Article  CAS  Google Scholar 

  31. Bau C, Middlemiss PJ, Hindley S, Jiang S, Ciccarelli R, Caciagli F, DiIorio P, Werstiuk ES, Rathbone MP (2005) Guanosine stimulates neurite outgrowth in PC12 cells via activation of heme oxygenase and cyclic GMP. Purinergic Signal 1(2):161–172

    Article  CAS  Google Scholar 

  32. Zuccarini M, Giuliani P, Frinchi M, Mudo G, Serio RM, Belluardo N et al (2018) Uncovering the signaling pathway behind extracellular guanine-induced activation of NO system: new perspectives in memory-related disorders. Front Pharmacol 9:110

    Article  CAS  Google Scholar 

  33. Austin C, Wray S (1993) Extracellular pH signals affect rat vascular tone by rapid transduction into intracellular pH changes. J Physiol 466:1–8

    Article  CAS  Google Scholar 

  34. Yegutkin (2014) Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 2014 49(6):473–497

    Article  CAS  Google Scholar 

  35. Wen J, Xia Y (2012) Adenosine signaling: good or bad in erectile function? Arterioscler Thromb Vasc Biol 32(4):845–850

    Article  CAS  Google Scholar 

  36. Leung GP, Man RY, Tse CM (2005) Effect of thiazolidinediones on equilibrative nucleoside transporter-1 in human aortic smooth muscle cells. Biochem Pharmacol 70(3):355–362

    Article  CAS  Google Scholar 

  37. Govindarajan R, Bakken AH, Hudkins KL, Lai Y, Casado FJ, Pastor-Anglada M, Tse CM, Hayashi J, Unadkat JD (2007) In situ hybridization and immunolocalization of concentrative and equilibrative nucleoside transporters in the human intestine, liver, kidneys, and placenta. Am J Phys Regul Integr Comp Phys 293(5):R1809–R1822

    CAS  Google Scholar 

  38. Leung GP, Ward JL, Wong PY, Tse CM (2001) Characterization of nucleoside transport systems in cultured rat epididymal epithelium. Am J Phys Cell Phys 280(5):C1076–C1082

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by São Paulo State Research Support Foundation (FAPESP - 2017/15175-1, 2018/21880-2), Higher Education Personnel Improvement Coordination (CAPES-001), and the National Council for Scientific and Technological Development (CNPQ-167319/2018-3).

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in the research and/or article preparation.

Corresponding author

Correspondence to Fabiola Zakia Mónica.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All experimental protocols were carried out according to the Ethical Principles in Animal Research adopted by the Brazilian College for Animal Experimentation and approved by the Institutional Committee for Ethics in Animal Research of the University of Campinas (CEUA/UNICAMP protocol number 4719-1).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Nicoletti, A., Passos, G.R., Bertollotto, G.M. et al. Guanosine, a guanine-based nucleoside relaxed isolated corpus cavernosum from mice through cGMP accumulation. Purinergic Signalling 16, 241–249 (2020). https://doi.org/10.1007/s11302-020-09702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09702-5

Keywords

Navigation