Skip to main content

Advertisement

Log in

P2X7R antagonism after subfailure overstretch injury of blood vessels reverses vasomotor dysfunction and prevents apoptosis

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Human saphenous vein (HSV) is harvested and prepared prior to implantation as an arterial bypass graft. Injury and the response to injury from surgical harvest and preparation trigger cascades of molecular events and contribute to graft remodeling and intimal hyperplasia. Apoptosis is an early response after implantation that contributes the development of neointimal lesions. Here, we showed that surgical harvest and preparation of HSV leads to vasomotor dysfunction, increased apoptosis and downregulation of the phosphorylation of the anti-apoptotic protein, Niban. A model of subfailure overstretch injury in rat aorta (RA) was used to demonstrate impaired vasomotor function, increased extracellular ATP (eATP) release, and increased apoptosis following pathological vascular injury. The subfailure overstretch injury was associated with activation of p38 MAPK stress pathway and decreases in the phosphorylation of the anti-apoptotic protein Niban. Treatment of RA after overstretch injury with antagonists to purinergic P2X7 receptor (P2X7R) antagonists or P2X7R/pannexin (PanX1) complex, but not PanX1 alone, restored vasomotor function. Inhibitors to P2X7R and PanX1 reduced stretch-induced eATP release. P2X7R/PanX1 antagonism led to decrease in p38 MAPK phosphorylation, restoration of Niban phosphorylation and increases in the phosphorylation of the anti-apoptotic protein Akt in RA and reduced TNFα-stimulated caspase 3/7 activity in cultured rat vascular smooth muscle cells. In conclusion, inhibition of P2X7R after overstretch injury restored vasomotor function and inhibited apoptosis. Treatment with P2X7R/PanX1 complex inhibitors after harvest and preparation injury of blood vessels used for bypass conduits may prevent the subsequent response to injury that lead to apoptosis and represents a novel therapeutic approach to prevent graft failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conte MS, Bandyk DF, Clowes AW et al (2006) Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg 43:742–751 discussion 51

    Article  PubMed  Google Scholar 

  2. Alexander JH, Hafley G, Harrington RA et al (2005) Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA 294:2446–2454

    Article  PubMed  Google Scholar 

  3. Rousou LJ, Taylor KB, XG L et al (2009) Saphenous vein conduits harvested by endoscopic technique exhibit structural and functional damage. Ann Thorac Surg 87:62–70

    Article  PubMed  Google Scholar 

  4. Cook RC, Crowley CM, Hayden R et al (2004) Traction injury during minimally invasive harvesting of the saphenous vein is associated with impaired endothelial function. J Thorac Cardiovasc Surg 127:65–71

    Article  PubMed  Google Scholar 

  5. Kiani S, Desai PH, Thirumvalavan N et al (2012) Endoscopic venous harvesting by inexperienced operators compromises venous graft remodeling. Ann Thorac Surg 93:11–17 discussion 7-8

    Article  PubMed  Google Scholar 

  6. Ahmed SR, Johansson BL, Karlsson MG, Souza DS, Dashwood MR, Loesch A (2004) Human saphenous vein and coronary bypass surgery: ultrastructural aspects of conventional and “no-touch” vein graft preparations. Histol Histopathol 19:421–433

    CAS  PubMed  Google Scholar 

  7. Hocking KM, Luo W, Li FD, Komalavilas P, Brophy C, Cheung-Flynn J (2016) Brilliant blue FCF is a nontoxic dye for saphenous vein graft marking that abrogates response to injury. J Vasc Surg 64:210–218

    Article  PubMed  Google Scholar 

  8. Wise ES, Hocking KM, Eagle S et al (2015) Preservation solution impacts physiologic function and cellular viability of human saphenous vein graft. Surgery 158:537–546

    Article  PubMed  PubMed Central  Google Scholar 

  9. Osgood MJ, Hocking KM, Voskresensky IV et al (2014) Surgical vein graft preparation promotes cellular dysfunction, oxidative stress, and intimal hyperplasia in human saphenous vein. J Vasc Surg 60:202–211

    Article  PubMed  Google Scholar 

  10. Galea J, Armstrong J, Francis SE, Cooper G, Crossman DC, Holt CM (1999) Alterations in c-fos expression, cell proliferation and apoptosis in pressure distended human saphenous vein. Cardiovasc Res 44:436–448

    Article  CAS  PubMed  Google Scholar 

  11. Moggio RA, Ding JZ, Smith CJ, Tota RR, Stemerman MB, Reed GE (1995) Immediate-early gene expression in human saphenous veins harvested during coronary artery bypass graft operations. J Thorac Cardiovasc Surg 110:209–213

    Article  CAS  PubMed  Google Scholar 

  12. Hinokiyama K, Valen G, Tokuno S, Vedin JB, Vaage J (2006) Vein graft harvesting induces inflammation and impairs vessel reactivity. Ann Thorac Surg 82:1458–1464

    Article  PubMed  Google Scholar 

  13. Wise ES, Hocking KM, Feldman D, Komalavilas P, Cheung-Flynn J, Brophy CM (2015) An optimized preparation technique for saphenous vein graft. Am Surg 81:E274–E276

    PubMed  PubMed Central  Google Scholar 

  14. Voskresensky IV, Wise ES, Hocking KM et al (2014) Brilliant blue FCF as an alternative dye for saphenous vein graft marking: effect on conduit function. JAMA Surg 149:1176–1181

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luo W, Guth CM, Jolayemi O, Duvall CL, Brophy CM, Cheung-Flynn J (2016) Subfailure overstretch injury leads to reversible functional impairment and purinergic P2X7 receptor activation in intact vascular tissue. Front Bioeng Biotechnol 4:75

    Article  PubMed  PubMed Central  Google Scholar 

  16. Beckel JM, Argall AJ, Lim JC et al (2014) Mechanosensitive release of adenosine 5′-triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: a mechanism for purinergic involvement in chronic strain. Glia 62:1486–1501

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sadananda P, Shang F, Liu L, Mansfield KJ, Burcher E (2009) Release of ATP from rat urinary bladder mucosa: role of acid, vanilloids and stretch. Br J Pharmacol 158:1655–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grygorczyk R, Furuya K, Sokabe M (2013) Imaging and characterization of stretch-induced ATP release from alveolar A549 cells. J Physiol 591:1195–1215

    Article  PubMed  Google Scholar 

  19. Loomis WH, Namiki S, Ostrom RS, Insel PA, Junger WG (2003) Hypertonic stress increases T cell interleukin-2 expression through a mechanism that involves ATP release, P2 receptor, and p38 MAPK activation. J Biol Chem 278:4590–4596

    Article  CAS  PubMed  Google Scholar 

  20. Vandenbeuch A, Anderson CB, Kinnamon SC (2015) Mice lacking Pannexin 1 release ATP and respond normally to all taste qualities. Chem Senses 40:461–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dahl G (2015) ATP Release through pannexon channels. Philos Trans R Soc Lond Ser B Biol Sci 370:20140191

  22. Song XM, XH X, Zhu J et al (2015) Up-regulation of P2X7 receptors mediating proliferation of Schwann cells after sciatic nerve injury. Purinergic Signal 11:203–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feng L, Chen Y, Ding R et al (2015) P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite. J Neuroinflammation 12:190

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333–372

    Article  CAS  PubMed  Google Scholar 

  25. Peng W, Cotrina ML, Han X et al (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A 106:12489–12493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bartlett R, Stokes L, Sluyter R (2014) The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 66:638–675

    Article  CAS  PubMed  Google Scholar 

  27. Majima S, Kajino K, Fukuda T, Otsuka F, Hino OA (2000) Novel gene “Niban” upregulated in renal carcinogenesis: cloning by the cDNA-amplified fragment length polymorphism approach. Jpn J Cancer Res 91:869–874

    Article  CAS  PubMed  Google Scholar 

  28. Ji H, Ding Z, Hawke D et al (2012) AKT-dependent phosphorylation of Niban regulates nucleophosmin- and MDM2-mediated p53 stability and cell apoptosis. EMBO Rep 13:554–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neary JT, Kang Y, Willoughby KA, Ellis EF (2003) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23:2348–2356

    CAS  PubMed  Google Scholar 

  30. Takahara N, Ito S, Furuya K et al (2014) Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol 51:772–782

    Article  PubMed  Google Scholar 

  31. Hong Y, Wang G, Del Arroyo AG, Hernandez J, Skene C, Erusalimsky JD (2006) Comparison between anagrelide and hydroxycarbamide in their activities against haematopoietic progenitor cell growth and differentiation: selectivity of anagrelide for the megakaryocytic lineage. Leukemia 20:1117–1122

    Article  CAS  PubMed  Google Scholar 

  32. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    Article  CAS  PubMed  Google Scholar 

  33. Godecke S, Roderigo C, Rose CR, Rauch BH, Godecke A, Schrader J, Thrombin-induced ATP (2012) Release from human umbilical vein endothelial cells. Am J Physiol Cell Physiol 302:C915–C923

    Article  PubMed  Google Scholar 

  34. Gandelman M, Peluffo H, Beckman JS, Cassina P, Barbeito L, Extracellular ATP (2010) The P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation 7:33

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brophy C, and Lander C (2015) De novo request from VasoPrep Surgical (formerly Moerae Matrix, Inc). Fed Regist 80:46485-46486

  36. Humphreys BD, Dubyak GR (1998) Modulation of P2X7 nucleotide receptor expression by pro- and anti-inflammatory stimuli in THP-1 monocytes. J Leukoc Biol 64:265–273

    CAS  PubMed  Google Scholar 

  37. Franceschini A, Capece M, Chiozzi P et al (2015) The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB J 29:2450–2461

    Article  CAS  PubMed  Google Scholar 

  38. Donnelly-Roberts DL, Namovic MT, Faltynek CR, Jarvis MF (2004) Mitogen-activated protein kinase and caspase signaling pathways are required for P2X7 receptor (P2X7R)-induced pore formation in human THP-1 cells. J Pharmacol Exp Ther 308:1053–1061

    Article  CAS  PubMed  Google Scholar 

  39. Jacques-Silva MC, Rodnight R, Lenz G et al (2004) P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br J Pharmacol 141:1106–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hocking KM, Brophy C, Rizvi SZ et al (2011) Detrimental effects of mechanical stretch on smooth muscle function in saphenous veins. J Vasc Surg 53:454–460

    Article  PubMed  Google Scholar 

  41. Raja SG, Sarang Z (2013) Endoscopic vein harvesting: technique, outcomes, concerns & controversies. J Thorac Dis 5(Suppl 6):S630–S637

    PubMed  PubMed Central  Google Scholar 

  42. Jufri NF, Mohamedali A, Avolio A, Baker MS (2015) Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vasc Cell 7:8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mantella LE, Quan A, Verma S (2015) Variability in vascular smooth muscle cell stretch-induced responses in 2D culture. Vasc Cell 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang K, Cao J, Dong R, Du J (2013) Early growth response protein 1 promotes restenosis by upregulating intercellular adhesion molecule-1 in vein graft. Oxidative Med Cell Longev 2013:432409

    Google Scholar 

  45. Rodriguez AI, Csanyi G, Ranayhossaini DJ et al (2015) MEF2B-Nox1 signaling is critical for stretch-induced phenotypic modulation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 35:430–438

    Article  CAS  PubMed  Google Scholar 

  46. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    Article  CAS  PubMed  Google Scholar 

  47. Zamaraeva MV, Sabirov RZ, Maeno E, Ando-Akatsuka Y, Bessonova SV, Okada Y (2005) Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ 12:1390–1397

    Article  CAS  PubMed  Google Scholar 

  48. Fitz JG (2007) Regulation of cellular ATP release. Trans Am Clin Climatol Assoc 118:199–208

    PubMed  PubMed Central  Google Scholar 

  49. North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40:563–580

    Article  CAS  PubMed  Google Scholar 

  50. Silverman WR, de Rivero Vaccari JP, Locovei S et al (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284:18143–18151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang J, Jackson DG, Dahl G (2013) The food dye FD&C Blue no. 1 is a selective inhibitor of the ATP release channel Panx1. The Journal of general physiology 141:649–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu SQ, Ruan YY, Tang D, Li YC, Goldman J, Zhong LA (2002) Possible role of initial cell death due to mechanical stretch in the regulation of subsequent cell proliferation in experimental vein grafts. Biomech Model Mechanobiol 1:17–27

    Article  CAS  PubMed  Google Scholar 

  53. Stark VK, Warner TF, Hoch JR (1997) An ultrastructural study of progressive intimal hyperplasia in rat vein grafts. J Vasc Surg 26:94–103

    Article  CAS  PubMed  Google Scholar 

  54. Rodriguez E, Lambert EH, Magno MG, Mannion JD (2000) Contractile smooth muscle cell apoptosis early after saphenous vein grafting. Ann Thorac Surg 70:1145–1153

    Article  CAS  PubMed  Google Scholar 

  55. Lee YH, Shynlova O, Lye SJ (2015) Stretch-induced human myometrial cytokines enhance immune cell recruitment via endothelial activation. Cell Mol Immunol 12:231–242

    Article  CAS  PubMed  Google Scholar 

  56. Gruden G, Setti G, Hayward A et al (2005) Mechanical stretch induces monocyte chemoattractant activity via an NF-kappaB-dependent monocyte chemoattractant protein-1-mediated pathway in human mesangial cells: inhibition by rosiglitazone. J Am Soc Nephrol 16:688–696

    Article  CAS  PubMed  Google Scholar 

  57. Panenka W, Jijon H, Herx LM et al (2001) P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J Neurosci 21:7135–7142

    CAS  PubMed  Google Scholar 

  58. Noguchi T, Ishii K, Fukutomi H et al (2008) Requirement of reactive oxygen species-dependent activation of ASK1-p38 MAPK pathway for extracellular ATP-induced apoptosis in macrophage. J Biol Chem 283:7657–7665

    Article  CAS  PubMed  Google Scholar 

  59. Chen S, Ma Q, Krafft PR et al (2013) P2X7 receptor antagonism inhibits p38 mitogen-activated protein kinase activation and ameliorates neuronal apoptosis after subarachnoid hemorrhage in rats. Crit Care Med 41:e466–e474

    Article  CAS  PubMed  Google Scholar 

  60. Cornelissen J, Armstrong J, Holt CM (2004) Mechanical stretch induces phosphorylation of p38-MAPK and apoptosis in human saphenous vein. Arterioscler Thromb Vasc Biol 24:451–456

    Article  CAS  PubMed  Google Scholar 

  61. Mayr M, Li C, Zou Y, Huemer U, Hu Y, Biomechanical XQ (2000) Stress-induced apoptosis in vein grafts involves p38 mitogen-activated protein kinases. FASEB J 14:261–270

    CAS  PubMed  Google Scholar 

  62. Matsumoto F, Fujii H, Abe M et al (2006) A novel tumor marker, Niban, is expressed in subsets of thyroid tumors and Hashimoto’s thyroiditis. Hum Pathol 37:1592–1600

    Article  CAS  PubMed  Google Scholar 

  63. Ito S, Fujii H, Matsumoto T, Abe M, Ikeda K, Hino O (2010) Frequent expression of Niban in head and neck squamous cell carcinoma and squamous dysplasia. Head Neck 32:96–103

    PubMed  Google Scholar 

  64. Kannangai R, Diehl AM, Sicklick J, Rojkind M, Thomas D, Torbenson M (2005) Hepatic angiomyolipoma and hepatic stellate cells share a similar gene expression profile. Hum Pathol 36:341–347

    Article  CAS  PubMed  Google Scholar 

  65. Adachi H, Majima S, Kon S et al (2004) Niban gene is commonly expressed in the renal tumors: a new candidate marker for renal carcinogenesis. Oncogene 23:3495–3500

    Article  CAS  PubMed  Google Scholar 

  66. Sun GD, Kobayashi T, Abe M et al (2007) The endoplasmic reticulum stress-inducible protein Niban regulates eIF2alpha and S6K1/4E-BP1 phosphorylation. Biochem Biophys Res Commun 360:181–187

    Article  CAS  PubMed  Google Scholar 

  67. Liu J, Qin J, Mei W et al (2014) Expression of Niban in renal interstitial fibrosis. Nephrology (Carlton) 19:479–489

    Article  CAS  Google Scholar 

  68. Bian S, Sun X, Bai A et al (2013) P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate tumor cell death. PLoS One 8:e60184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mistafa O, Ghalali A, Kadekar S, Hogberg J, Stenius U (2010) Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases. J Biol Chem 285:27900–27910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Amoroso F, Capece M, Rotondo A et al (2015) The P2X7 receptor is a key modulator of the PI3K/GSK3beta/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene

Download references

Acknowledgments

We would like to thank the Vanderbilt cardiac surgical teams for providing human specimens for this study.

Funding

This work was supported by NIH grants R01HL70715-09 (to CB) R01HL105731-01 (to JC), a VA merit award I01BX002036 (to CB), and in part by CTSA award No. UL1TR000445 from the National Center for Advancing Translational Sciences (to JC). Its contents are solely the responsibility of the authors and do not necessarily represent official views of the National Center for Advancing Translational Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce Cheung-Flynn.

Ethics declarations

Conflict of interest

Drs. Brophy and Cheung-Flynn are inventors on U.S. Patent 8691556 and disclose that they have financial relationships with VasoPrep Surgical, Inc. (Morristown, NJ).

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Feldman, D., McCallister, R. et al. P2X7R antagonism after subfailure overstretch injury of blood vessels reverses vasomotor dysfunction and prevents apoptosis. Purinergic Signalling 13, 579–590 (2017). https://doi.org/10.1007/s11302-017-9585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-017-9585-0

Keywords

Navigation