Skip to main content

Advertisement

Log in

Colonic motor dysfunctions in a mouse model of high-fat diet-induced obesity: an involvement of A2B adenosine receptors

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Adenosine A2B receptors (A2BR) regulate several enteric functions. However, their implication in the pathophysiology of intestinal dysmotility associated with high-fat diet (HFD)-induced obesity has not been elucidated. We investigated the expression of A2BR in mouse colon and their role in the mechanisms underlying the development of enteric dysmotility associated with obesity. Wild-type C57BL/6J mice were fed with HFD (60% kcal from fat) or normocaloric diet (NCD; 18% kcal from fat) for 8 weeks. Colonic A2BR localization was examined by immunofluorescence. The role of A2BR in the control of colonic motility was examined in functional experiments on longitudinal muscle preparations (LMPs). In NCD mice, A2BR were predominantly located in myenteric neurons; in HFD animals, their expression increased throughout the neuromuscular layer. Functionally, the A2BR antagonist MRS1754 enhanced electrically induced NK1-mediated tachykininergic contractions in LMPs from HFD mice, while it was less effective in tissues from NCD mice. The A2B receptor agonist BAY 60-6583 decreased colonic tachykininergic contractions in LMPs, with higher efficacy in preparations from obese mice. Both A2BR ligands did not affect contractions elicited by exogenous substance P. Obesity is related with a condition of colonic inflammation, leading to an increase of A2BR expression. A2BR, modulating the activity of excitatory tachykininergic nerves, participate to the enteric dysmotility associated with obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Soares A et al (2015) Intestinal and neuronal myenteric adaptations in the small intestine induced by a high-fat diet in mice. BMC Gastroenterol 15:3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andersen CJ, Murphy KE, Fernandez ML (2016) Impact of obesity and metabolic syndrome on immunity. Adv Nutr 7(1):66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ho W, Spiegel BM (2008) The relationship between obesity and functional gastrointestinal disorders: causation, association, or neither? Gastroenterol Hepatol (N Y) 4(8):572–578

    Google Scholar 

  4. Fysekidis M et al (2012) Prevalence and co-occurrence of upper and lower functional gastrointestinal symptoms in patients eligible for bariatric surgery. Obes Surg 22(3):403–410

    Article  PubMed  Google Scholar 

  5. Le Pluart D et al (2015) Functional gastrointestinal disorders in 35,447 adults and their association with body mass index. Aliment Pharmacol Ther 41(8):758–767

    Article  PubMed  Google Scholar 

  6. vd Baan-Slootweg OH et al (2011) Constipation and colonic transit times in children with morbid obesity. J Pediatr Gastroenterol Nutr 52(4):442–445

    Article  Google Scholar 

  7. Bertrand RL et al (2011) A Western diet increases serotonin availability in rat small intestine. Endocrinology 152(1):36–47

    Article  CAS  PubMed  Google Scholar 

  8. Nezami BG et al (2014) MicroRNA 375 mediates palmitate-induced enteric neuronal damage and high-fat diet-induced delayed intestinal transit in mice. Gastroenterology 146(2):473–483 e3

    Article  CAS  PubMed  Google Scholar 

  9. Lam YY et al (2012) Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One 7(3):e34233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Raybould HE (2012) Gut microbiota, epithelial function and derangements in obesity. J Physiol 590(Pt 3):441–446

    Article  CAS  PubMed  Google Scholar 

  11. Stenman LK, Holma R, Korpela R (2012) High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids. World J Gastroenterol 18(9):923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Neunlist M et al (2003) Changes in chemical coding of myenteric neurones in ulcerative colitis. Gut 52(1):84–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. ter Beek WP et al (2007) Substance P receptor expression in patients with inflammatory bowel disease. Determination by three different techniques, i.e., storage phosphor autoradiography, RT-PCR and immunohistochemistry. Neuropeptides 41(5):301–306

    Article  PubMed  Google Scholar 

  14. Antonioli L et al (2008) Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications. Pharmacol Ther 120(3):233–253

    Article  CAS  PubMed  Google Scholar 

  15. Kadowaki M et al (2000) Molecular identification and pharmacological characterization of adenosine receptors in the guinea-pig colon. Br J Pharmacol 129(5):871–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fozard JR, Baur F, Wolber C (2003) Antagonist pharmacology of adenosine A2B receptors from rat, guinea pig and dog. Eur J Pharmacol 475(1–3):79–84

    Article  CAS  PubMed  Google Scholar 

  17. Zizzo MG, Mule F, Serio R (2006) Inhibitory responses to exogenous adenosine in murine proximal and distal colon. Br J Pharmacol 148(7):956–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chandrasekharan BP et al (2009) Adenosine 2B receptors (A(2B)AR) on enteric neurons regulate murine distal colonic motility. FASEB J 23(8):2727–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Antonioli L et al (2014) Role of the A(2B) receptor-adenosine deaminase complex in colonic dysmotility associated with bowel inflammation in rats. Br J Pharmacol 171(5):1314–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smemo S et al (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507(7492):371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Antonioli L et al (2010) The blockade of adenosine deaminase ameliorates chronic experimental colitis through the recruitment of adenosine A2A and A3 receptors. J Pharmacol Exp Ther 335(2):434–442

    Article  CAS  PubMed  Google Scholar 

  22. Erben U et al (2014) A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol 7(8):4557–4576

    PubMed  PubMed Central  Google Scholar 

  23. Giron MC et al (2008) Cyclic AMP in rat ileum: evidence for the presence of an extracellular cyclic AMP-adenosine pathway. Gastroenterology 134(4):1116–1126

    Article  CAS  PubMed  Google Scholar 

  24. Zoppellaro C et al (2013) Adenosine-mediated enteric neuromuscular function is affected during herpes simplex virus type 1 infection of rat enteric nervous system. PLoS One 8(8):e72648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orso G et al (2005) Disease-related phenotypes in a Drosophila model of hereditary spastic paraplegia are ameliorated by treatment with vinblastine. J Clin Invest 115(11):3026–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  27. Antonioli L et al (2014) Involvement of the P2X7 purinergic receptor in colonic motor dysfunction associated with bowel inflammation in rats. PLoS One 9(12):e116253

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zizzo MG et al (2011) Adenosine negatively regulates duodenal motility in mice: role of A(1) and A(2A) receptors. Br J Pharmacol 164(6):1580–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Antonioli L et al (2010) Control of enteric neuromuscular functions by purinergic A(3) receptors in normal rat distal colon and experimental bowel inflammation. Br J Pharmacol 161(4):856–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14(7):1315–1323

    Article  CAS  PubMed  Google Scholar 

  31. Hasko G et al (2009) A(2B) adenosine receptors in immunity and inflammation. Trends Immunol 30(6):263–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei W et al (2013) Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. J Immunol 190(1):138–146

    Article  CAS  PubMed  Google Scholar 

  33. Belikoff BG et al (2012) A2B adenosine receptor expression by myeloid cells is proinflammatory in murine allergic-airway inflammation. J Immunol 189(7):3707–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun CX et al (2006) Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J Clin Invest 116(8):2173–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Frick JS et al (2009) Contribution of adenosine A2B receptors to inflammatory parameters of experimental colitis. J Immunol 182(8):4957–4964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kolachala VL et al (2008) A2B adenosine receptor gene deletion attenuates murine colitis. Gastroenterology 135(3):861–870

    Article  PubMed  PubMed Central  Google Scholar 

  37. Csoka B et al (2014) A2B adenosine receptors prevent insulin resistance by inhibiting adipose tissue inflammation via maintaining alternative macrophage activation. Diabetes 63(3):850–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Figler RA et al (2011) Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 60(2):669–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnston-Cox H et al (2012) The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One 7(7):e40584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang CY, Liao JK (2012) A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol 821:421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim KA et al (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7(10):e47713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laurila A et al (2001) High-fat, high-cholesterol diet increases the incidence of gastritis in LDL receptor-negative mice. Arterioscler Thromb Vasc Biol 21(6):991–996

    Article  CAS  PubMed  Google Scholar 

  43. Kolbus D et al (2010) CD8+ T cell activation predominate early immune responses to hypercholesterolemia in ApoE(−)(/)(−) mice. BMC Immunol 11:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khan WI, Collins SM (2006) Gut motor function: immunological control in enteric infection and inflammation. Clin Exp Immunol 143(3):389–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Margolis KG, Gershon MD (2009) Neuropeptides and inflammatory bowel disease. Curr Opin Gastroenterol 25(6):503–511

    Article  CAS  PubMed  Google Scholar 

  46. Johnson AR, Milner JJ, Makowski L (2012) The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 249(1):218–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghigliotti G et al (2014) Adipose tissue immune response: novel triggers and consequences for chronic inflammatory conditions. Inflammation 37(4):1337–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bing C (2015) Is interleukin-1beta a culprit in macrophage-adipocyte crosstalk in obesity? Adipocyte 4(2):149–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fornai M et al (2014) Role of cyclooxygenase isoforms in the altered excitatory motor pathways of human colon with diverticular disease. Br J Pharmacol 171(15):3728–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kolachala V et al (2005) TNF-alpha upregulates adenosine 2b (A2b) receptor expression and signaling in intestinal epithelial cells: a basis for A2bR overexpression in colitis. Cell Mol Life Sci 62(22):2647–2657

    Article  CAS  PubMed  Google Scholar 

  51. Kolachala V et al (2008) Blockade of adenosine A2B receptors ameliorates murine colitis. Br J Pharmacol 155(1):127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ochoa-Cortes F et al (2016) Enteric glial cells: a new frontier in neurogastroenterology and clinical target for inflammatory bowel diseases. Inflamm Bowel Dis 22(2):433–449

    Article  PubMed  Google Scholar 

  53. Boison D, Chen JF, Fredholm BB (2010) Adenosine signaling and function in glial cells. Cell Death Differ 17(7):1071–1082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from San Camillo Hospital, Treviso (Italy), to MCG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LA, RC, MF, CP, GH, and CB designed the study; ET, DG, MCG, VC, IM, GO, NB, CS, CI, BC, and ZHN collected and analyzed the data; and LA, RC, MF, CS, CP, GH, and CB wrote the manuscript. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Matteo Fornai.

Ethics declarations

Conflicts of interest

Luca Antonioli declares that he has no conflict of interest.

Carolina Pellegrini declares that she has no conflict of interest.

Matteo Fornai declares that he has no conflict of interest.

Erika Tirotta declares that she has no conflict of interest.

Daniela Gentile declares that she has no conflict of interest.

Laura Benvenuti declares that she has no conflict of interest.

Maria Cecilia Giron declares that she has no conflict of interest.

Valentina Caputi declares that she has no conflict of interest.

Ilaria Marsilio declares that she has no conflict of interest.

Genny Orso declares that she has no conflict of interest.

Nunzia Bernardini declares that she has no conflict of interest.

Cristina Segnani declares that she has no conflict of interest.

Chiara Ippolito declares that she has no conflict of interest.

Balázs Csóka declares that he has no conflict of interest.

Zoltán H. Németh declares that he has no conflict of interest.

György Haskó declares that he has no conflict of interest.

Carmelo Scarpignato declares that he has no conflict of interest.

Corrado Blandizzi declares that he has no conflict of interest.

Rocchina Colucci declares that she has no conflict of interest.

Ethical approval

The experiments were approved by the Ethical Committee for Animal Experimentation of the University of Pisa and by the Italian Ministry of Health (authorization no. 744/2015-PR).

Electronic supplementary material

Supplemental Fig. 1

Preparations of colonic longitudinal smooth muscle obtained from mice fed with normocaloric diet (NCD) or high-fat diet (HFD) maintained in standard Krebs solution. (A) Effects of increasing concentrations of MRS 1754 (0.001–1 μM) on contractions induced by electrical stimulation (ES, 10 Hz). (B) Effects of MRS 1754 (0.01 μM) on contractile responses to ES in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 0.01 μM), 4-(2-[7-Amino-2-(2-furyl) [1,2,4] triazolo[2,3-a] [1, 3, 5]triazin-5-ylamino]ethyl)phenol (ZM 241385; 0.01 μM) and N-[9-Chloro-2-(2-furanyl)[1,2,4]-triazolo[1,5-c]quinazolin-5-yl]benzene acetamide (MRS 1220; 0.1 μM). Each column represents the mean ± standard error of mean value obtained from six experiments. *P < 0.05 vs control. (GIF 111 kb).

High resolution image (TIFF 84 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonioli, L., Pellegrini, C., Fornai, M. et al. Colonic motor dysfunctions in a mouse model of high-fat diet-induced obesity: an involvement of A2B adenosine receptors. Purinergic Signalling 13, 497–510 (2017). https://doi.org/10.1007/s11302-017-9577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-017-9577-0

Keywords

Navigation