Skip to main content
Log in

The effects of NONRATT021972 lncRNA siRNA on PC12 neuronal injury mediated by P2X7 receptor after exposure to oxygen-glucose deprivation

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Adenosine triphosphate (ATP) participates in signal transmission by acting on P2X receptors, and the P2X7 receptor is involved in the pathophysiological changes of ischemic injury. The PC12 cell line is a popular model system to study sympathetic neuronal function. Long noncoding RNAs (lncRNAs) are highly expressed in the nervous system and serve as regulatory RNAs. In this study, the effects of NONRATT021972 lncRNA siRNA on P2X7-mediated PC12 neuronal injury after exposure to oxygen-glucose deprivation (OGD) were investigated. Our results showed that the viability of PC12 cells cultured with OGD or the P2X7 agonist BzATP was significantly decreased. Treatment with NONRATT021972 siRNA reversed the decreased viability of PC12 cells under OGD conditions. The upregulated P2X7 mRNA and protein levels in PC12 cells under OGD conditions or BzATP treatment were significantly decreased when pretreated with NONRATT021972 siRNA. Moreover, NONRATT021972 siRNA treatment effectively suppressed the increase in [Ca2+]i induced by OGD or P2X7 agonists (ATP or BzATP) in PC12 cells. Therefore, treatment with NONRATT021972 siRNA may decrease sympathetic neuronal injury induced by ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burnstock G (2014) Purinergic signalling: from discovery to current developments. Exp Physiol 99(1):16–34

    Article  CAS  PubMed  Google Scholar 

  2. Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274

    Article  CAS  PubMed  Google Scholar 

  3. Mutafova-Yambolieva VN, Durnin L (2014) The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 144(2):162–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arslan G, Filipeanu CM, Irenius E, Kull B, Clementi E, Allgaier C, Erlinge D, Fredholm BB (2000) P2Y receptors contribute to ATP induced increases in intracellular calcium in differentiated but not undifferentiated PC12 cells. Neuropharmacology 39:482–496

    Article  CAS  PubMed  Google Scholar 

  5. Arthur DB, Taupenot L, Insel PA (2007) Nerve growth factor-stimulated neuronal differentiation induces changes in P2 receptor expression and nucleotide- stimulated catecholamine release. J Neurochem 100:1257–1264

    Article  CAS  PubMed  Google Scholar 

  6. Sato A, Arimura Y, Manago Y, Nishikawa K, Aoki K, Wada E, Suzuki Y, Osaka H, Setsuie R, Sakurai M, Amano T, Aoki S, Wada K, Noda M (2006) Parkin potentiates ATP induced currents due to activation of P2X receptors in PC12 cells. J Cell Physiol 209:172–182

    Article  CAS  PubMed  Google Scholar 

  7. Arbeloa J, Pérez-Samartín A, Gottlieb M, Matute C (2011) P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis 45:954–961

    Article  PubMed  Google Scholar 

  8. Liang S, Xu C, Li G, Gao Y (2010) P2X receptors and modulation of pain transmission: focus on effects of drugs and compounds used in traditional Chinese medicine. Neurochem Int 57(7):705–712

    Article  CAS  PubMed  Google Scholar 

  9. Skaper SD, Debetto P, Giusti P (2010) The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 24:337–345

    Article  CAS  PubMed  Google Scholar 

  10. Sperlagh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Li X, Gao Y, Guo G, Xu C, Li G, Liu S, Huang A, Tu G, Peng H, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Liang S (2013) Effects of puerarin on the inflammatory role of burn-related procedural pain mediated by P2X(7) receptors. Burns 39(4):610–618

    Article  PubMed  Google Scholar 

  12. Shao LJ, Liang SD, Li GL, Xu CS, Zhang CP (2007) Exploration of P2X P2X3 in the rat stellate ganglia after myocardial ischemia. Acta Histochem 109:330–337

    Article  CAS  PubMed  Google Scholar 

  13. Zhang CP, Xu CS, Liang SD, Li GL, Gao Y, Wang YX, Zhang AX, Wan F (2007) The involvement of P2X3 receptors of rat sympathetic ganglia in cardiac nociceptive transmission. J Physiol Biochem 63:249–257

    Article  CAS  PubMed  Google Scholar 

  14. Zhang CP, Li GL, Liang SD, Xu CS, Zhu GC, Wang YX, Zhang AX, Wan F (2008) Myocardial ischemic nociceptive signaling mediated by P2X3 receptor in rat stellate ganglion neurons. Brain Res Bull 75:77–82

    Article  CAS  PubMed  Google Scholar 

  15. Li GL, Liu SM, Zhang J, Yu KH, Xu CS, Lin JR, Li X, Liang SD (2010) Increased sympathoexcitatory reflex induced by myocardial ischemic nociceptive signaling via P2X(2/3) receptor in rat superior cervical ganglia. Neurochem Int 56(8):984–390

    Article  CAS  PubMed  Google Scholar 

  16. Li GL, Liu SM, Yang Y, Xie JY, Liu J, Kong FJ, Tu GH, Wu RP, Li GD, Liang SD (2011) Effects of oxymatrine on sympathoexcitatory reflex induced by myocardial ischemic signaling mediated by P2X3 receptors in rat SCG and DRG. Brain Res Bull 84:419–424

    Article  CAS  PubMed  Google Scholar 

  17. Kong F, Liu S, Xu C, Liu J, Li G, Li G, Gao Y, Lin H, Tu G, Peng H, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Liang S (2013) Electrophysiological studies of upregulated P2X7 receptors in rat superior cervical ganglia after myocardial ischemic injury. Neurochem Int 63:230–237

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, Li G, Peng H, Tu G, Kong F, Liu S, Gao Y, Xu H, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Wu B, Peng L, Song M, Wu Q, Li G, Liang S (2013) Sensory-sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor. Purinergic Signal 9:463–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu SM, Zhang CP, Shi QM, Li GL, Song MM, Gao Y, Xu CS, Xu H, Fan B, Yu SC, Zheng CR, Zhu QC, Wu B, Peng LC, Xiong HG, Wu Q, Liang SD (2014) Puerarin blocks the signaling transmission mediated by P2X3 in SG and DRG to relieve myocardial ischemic damage. Brain Res Bull 101:57–63

    Article  CAS  PubMed  Google Scholar 

  20. Liu SM, Yu SC, Xu CS, Peng LC, Xu H, Zhang CP, Li GL, Gao Y, Fan B, Zhu QC, Zheng CR, Wu B, Song MM, Wu Q, Liang SD (2014) Puerarin alleviates aggravated sympathoexcitatory response induced by myocardial ischemia via regulating P2X3 receptor in rat superior cervical ganglia. Neurochem Int 70:39–49

    Article  CAS  PubMed  Google Scholar 

  21. Tu G, Li G, Peng H, Hu J, Liu J, Kong F, Liu S, Gao Y, Xu C, Xu X, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Wu B, Peng L, Song M, Wu Q, Liang S (2013) P2X7 inhibition in stellate ganglia prevents the increased sympathoexcitatory reflex via sensory-sympathetic coupling induced by myocardial ischemic injury. Brain Res Bull 96:71–85

    Article  CAS  PubMed  Google Scholar 

  22. Fu LW, Longhurst JC (2010) A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia. Am J Physiol Heart Circ Physiol 299(6):H1762–H1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vasileiou E, Montero RM, Turner CM, Vergoulas G (2010) P2X7 receptor at the heart of disease. Hippokratia 14(3):155–163

    PubMed  PubMed Central  Google Scholar 

  24. Xu H, Wu B, Jiang FQ, Xiong SH, Zhang BP, Li GL, Liu SM, Gao Y, Xu CS, Tu GH, Peng HY, Liang SD, Xiong HG (2013) High fatty acids modulate P2X7 expression and IL-6 release via the p38 MAPK pathway in PC12 cells. Brain Res Bull 94:63–70

    Article  CAS  PubMed  Google Scholar 

  25. Lecht S, Rotfeld E, Arien-Zakay H, Tabakman R, Matzner H, Yaka R, Lelkes PI, Lazarovici P (2012) Neuroprotective effects of nimodipine and nifedipine in the NGF-differentiated PC12 cells exposed to oxygen-glucose deprivation or trophic withdrawal. Int J Dev Neurosci 30:465–469

    Article  CAS  PubMed  Google Scholar 

  26. Meng F, To WK, Gu Y (2008) Inhibition effect of arachidonic acid on hypoxia-induced [Ca2+]i elevation in PC12 cells and human pulmonary artery smooth muscle cells. Respir Physiol Neurobiol 162:18–23

    Article  CAS  PubMed  Google Scholar 

  27. Milius D, Sperlagh B, Illes P (2008) Up-regulation of P2X7 receptor- immunoreactivity by in vitro ischemia on the plasma membrane of cultured rat cortical neurons. Neurosci Lett 446:45–50

    Article  CAS  PubMed  Google Scholar 

  28. Qureshia IA, Mattickg JS, Mehlera MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35

    Article  Google Scholar 

  29. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, Swerdel MR, D’Ecclessis MF, Moore JC et al (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e01749

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gesualdo FD, Capaccioli S, Lulli M (2014) A pathophysiological view of the long non-coding RNA world. Oncotarget 5(22):10976–10996

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yu Y, Fuscoe JC, Zhao C, Guo C, Jia M, Qing T, Bannon DI, Lancashire L, Bao W, Du T, Luo H, Su Z, Jones WD, Moland CL, Branham WS, Qian F, Ning B, Li Y, Hong H, Guo L, Mei N, Shi T, Wang KY, Wolfinger RD, Nikolsky Y, Walker SJ, Duerksen-Hughes P, Mason CE, Tong W, Thierry-Mieg J, Thierry-Mieg D, Shi L, Wang C (2014) A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nature Communications 5:3230 http://www.noncode.org/show_rna.php?id=NONRATT021972

  33. Fan B, Liu SM, Xu CS, Liu J, Kong FJ, Li GL, Gao Y, Xu H, Yu SC, Zheng CR, Peng LC, Song MM, Wu B, Lv QL, Zou LF, Ying MF, Zhang X, Liang SD (2014) The role of P2X7 receptor in PC12 cells after exposure to oxygen-glucose deprivation. Auton Neurosci Basic Clin 185:36–42

    Article  CAS  Google Scholar 

  34. Xu H, Xiong C, He L, Wu B, Peng L, Cheng Y, Jiang F, Tan L, Tang L, Tu Y, Yang Y, Liu C, Gao Y, Li G, Zhang C, Liu S, Xu C, Wu H, Li G, Liang S (2015) Trans-resveratrol attenuates high fatty acid-Induced P2X7 receptor expression and IL-6 release in PC12 cells: possible role of P38 MAPK pathway. Inflammation 38(1):327–337

    Article  CAS  PubMed  Google Scholar 

  35. Hillion JA, Takahashi K, Maric D, Ruetzler C, Barker JL, Hallenbeck JM (2005) Development of an ischemic tolerance model in a PC12 cell line. J Cereb Blood Flow Metab 25(2):154–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Larsen EC, Hatcher JF, Adibhatla RM (2007) Effect of tricyclodecan-9-yl potassium xanthate (D609) on phospholipid metabolism and cell death during oxygen-glucose deprivation in PC12 cells. Neuroscience 146(3):946–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McNeill-Blue C, Wetmore BA, Sanchez JF, Freed WJ, Merrick BA (2006) Apoptosis mediated by p53 in rat neural AF5 cells following treatment with hydrogen peroxide and staurosporine. Brain Res 1112:1–15

    Article  CAS  PubMed  Google Scholar 

  38. Fang KM, Yang CS, Sun SH, Tzeng SF (2009) Microglial phagocytosis attenuated by short-term exposure to exogenous ATP through P2X receptor action. J Neurochem 111(5):1225–1237

    Article  CAS  PubMed  Google Scholar 

  39. Morigiwa K, Quan M, Murakami M, Yamashita M, Fukuda Y (2000) P2 Purinoceptor expression and functional changes of hypoxia-activated cultured rat retinal microglia. Neurosci Lett 282(3):153–156

    Article  CAS  PubMed  Google Scholar 

  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  41. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system:an overview. Trends Neurosci 32(1):19–29

    Article  CAS  PubMed  Google Scholar 

  42. Gourine AV, Wood JD, Burnstock G (2009) Purinergic signalling in autonomic control. Trends Neurosci 32(5):241–248

    Article  CAS  PubMed  Google Scholar 

  43. Kennedy C (2005) P2X receptors: targets for novel analgesics? Neuroscientist 11:345–356

    Article  CAS  PubMed  Google Scholar 

  44. Sperlagh B, Csolle C, Ando RD, Goloncser F, Kittel A, Baranyi M (2012) The role of purinergic signaling in depressive disorders. Neuropsychopharmacol Hung 14(4):231–238

    PubMed  Google Scholar 

  45. Vassort G (2001) Adenosine 5′-triphosphate: a P2-purinergic agonist in the myocardium. Physiol Physiol Rev 81(2):767–806

    CAS  PubMed  Google Scholar 

  46. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signal 4:1–20

    Article  CAS  PubMed  Google Scholar 

  47. Ng SY, Lin L, Soh BS, Stanton LW (2013) Long noncoding RNAs in development and disease of the central nervous system. Trends Genet 29(8):461–468

    Article  CAS  PubMed  Google Scholar 

  48. Eyo UB, Miner SA, Ahlers KE, Wu LJ, Dailey ME (2013) P2X7 receptor activation regulates microglial cell death during oxygen-glucose deprivation. Neuropharmacology 73:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burnstock G, Pelleg A (2015) Cardiac purinergic signalling in health and disease. Purinergic Signalling 11:1–46

    Article  CAS  PubMed  Google Scholar 

  50. Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821–827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were supported by grants (nos. 81570735, 31560276, 81560219, 81560529, 81171184, 31060139, and 81200853) from the National Natural Science Foundation of China, a grant (no. 20151122040105) from the Technology Pedestal and Society Development Project of Jiangxi Province, a grant (no. 20142BAB205028) from the Natural Science Foundation of Jiangxi Province, and grants (nos. GJJ13155 and GJJ14319) from the Educational Department of Jiangxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangdong Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Guilin Li and Lifang Zou are both first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Zou, L., Xie, W. et al. The effects of NONRATT021972 lncRNA siRNA on PC12 neuronal injury mediated by P2X7 receptor after exposure to oxygen-glucose deprivation. Purinergic Signalling 12, 479–487 (2016). https://doi.org/10.1007/s11302-016-9513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9513-8

Keywords

Navigation