Skip to main content
Log in

Ad hoc breeding of a genetically depauperate landrace of noble fir (Abies procera Rehder) using SNP genotyping via high-throughput targeted sequencing

  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Pedigree reconstruction via DNA markers and subsequent quantitative genetic analyses in production stands of trees is an alternative to traditional forest tree breeding. The method requires variable DNA markers; preferably cost-efficient to genotype. We tested the approach in breeding for Christmas tree traits in a Danish landrace of Abies procera. Initial analysis with simple sequence repeats (SSRs) revealed a substantial reduction in genetic diversity of Danish A. procera compared with direct imports from the USA, indicating a genetic bottleneck. Due to the reduced genetic variation, the SSRs were not variable enough for pedigree reconstruction, and 145 single nucleotide polymorphisms (SNPs) were therefore identified and genotyped via high-throughput targeted sequencing. In the field, we phenotypically selected 674 superior trees, based on criteria for good Christmas trees, among 21,000 trees in three Christmas tree plantations originating from an A. procera clonal seed orchard. By SNP-genotyping and parentage analysis, pedigree was reconstructed for the selected individuals, and genetic predictions for the Christmas tree traits were estimated. A final selection of 45 trees out of the 674 genotyped, based on an index of predicted values for different traits, foresees a gain in the Christmas tree score and branch angle score of 16% and 10%, respectively. The study clearly demonstrated the benefits of pedigree reconstruction, even though mass selection seemed to give similar gain. Primarily, the possibilities to control the level of inbreeding, and to check whether the production stands, from where we select trees, actually originate from the declared and desired parent pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barner H, Roulund H, Qvortrup SA (1980) Abies procera seed supply and choice of provenances OT: Abies procera frøforsyning og proveniensvalg. Dansk Skovforenings Tidsskrift 65:263–295

    Google Scholar 

  • Chastagner GA, Staley JM, Riley KL (1990) Current season needle necrosis: a needle disorder of unknown etiology on noble and grand fir Christmas trees in the Pacific Northwest. pp 38-42. In: Merrill, W. and M.E, Ostry (Eds). Recent research on foliage diseases, conference proceedings, gen tech. Rep. Wo-56 Washington, D.C., USDA Forest Service. 145p

  • Cremer E, Liepelt S, Sebastiani F, Buonamici A, Michalczyk IM, Ziegenhagen B, Vendramin GG (2006) Identification and characterization of nuclear microsatellite loci in Abies alba mill. Mol Ecol Notes 6:374–376

    Article  CAS  Google Scholar 

  • Danish Land Development Service (1979) Registration report for FP623 [In Danish]. Hedeselskabet, Krogårdsvej 6, DK-8882 Fårvang

  • David A, Pike C, Stine R (2003) Comparison of selection methods for optimizing genetic gain and gene diversity in a red pine (Pinus resinosa Ait.) seedling seed orchard. Theor Appl Genet 107:843–849

    Article  CAS  PubMed  Google Scholar 

  • Doede DL, Adams WT (1998) The genetics of stem volume, stem form, and branch characteristics in sapling noble fir. Silvae Genetica 47(4):177–183

    Google Scholar 

  • Dungey HS, Dash JP, Pont D, Clinton PW, Watt MS, Telfer EJ (2018) Phenotyping whole forests will help to track genetic performance. Trends Plant Sci 23(10):854–864. https://doi.org/10.1016/j.tplants.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  • El-Kassaby YA, Lstibůrek M (2009) Breeding without breeding. Genet Res 91:111–120

    Article  Google Scholar 

  • Falconer DS (1989) Introduction to quantitative genetics, 3rd edn. Harlow, Essex, UK: Longman Scientific & Technical. 438p. ISBN 0-470-21162-8

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edin 52:399–433

    Article  Google Scholar 

  • Franklin JF (1990) Noble fir (Abies procera Rehd.). In: Silvics of North America 1. Conifers. Agriculture Handbook 654 (eds. Burns RM, Honkala BH), U.S. Department of Agriculture, Forest Service, Washington, DC

  • Gilmour AR, Cullis BR, Verbyla AP (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agr Biol Envir St 2:269–293. https://doi.org/10.2307/1400446

    Article  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml user guide release 2.0. VSN International Ltd. Hemel Hempstead, UK

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R, Butler D (2009) ASReml user guide release 3.0. VSN International Ltd, Hemel Hempstead, UK

  • Grattapaglia D, Ribeiro VJ, Rezende GDSP (2004) Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus. Theor Appl Genet 109:192–199

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller BSF, Tan B, Isik F, Ratcliffe B, El-Kassaby YA (2018) Quantitative genetics and genomics converge to accelerate forest tree breeding. Front Plant Sci 9:1693. https://doi.org/10.3389/fpls.2018.01693

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen OK, McKinney LV (2010) Establishment of a quasi-field trial in Abies nordmanniana—test of a new approach to forest tree breeding. Tree Genet Genomes 6:345–355. https://doi.org/10.1007/s11295-009-0253-6

    Article  Google Scholar 

  • Hansen OK, Nielsen UB (2010) Microsatellites used to establish full pedigree in a half-sib trial and correlation between number of male strobili and paternal success. Ann For Sci 67:703–703. https://doi.org/10.1051/forest/2010028

    Article  Google Scholar 

  • Hansen OK, Vendramin GG, Sebastiani F, Edwards KJ (2005) Development of microsatellite markers in Abies nordmanniana (Stev.) Spach and cross-species amplification in the Abies genus. Mol. Ecol. Notes 5:784–787

    Article  CAS  Google Scholar 

  • Hedrick PW, Savolainen O, Karkkainen K (1999) Factors influencing the extent of inbreeding depression: an example from Scots pine. Heredity 82:441–450

    Article  PubMed  Google Scholar 

  • Isik F (2014) Genomic selection in forest tree breeding: the concept and an outlook to the future. New For 45:379–401. https://doi.org/10.1007/s11056-014-9422-z

    Article  Google Scholar 

  • Josserand SA, Potter KM, Johnson G, Bowen JA, Frampton J, Nelson CD (2006) Isolation and characterization of microsatellite markers in Fraser fir (Abies fraseri). Mol Ecol Notes 6:65–68

    Article  CAS  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Koskela J, Vinceti B, Dvorak W, Bush D, Dawson IK, Loo J, Kjaer ED, Navarro C, Padolina C, Bordács S, Bordacs S, Jamnadass R, Graudal L, Ramamonjisoa L (2014) Utilization and transfer of forest genetic resources: a global review. For Ecol Manag 333:22–34

    Article  Google Scholar 

  • Lambeth C, Lee BC, O’Malley D, Wheeler N (2001) Polymix breeding with parental analysis of progeny: an alternative to full-sib breeding and testing. Theor Appl Genet 103:930–943. https://doi.org/10.1007/s001220100627

    Article  Google Scholar 

  • Landgren C, Nielsen UB, Chastagner GA (2017) Comparison of noble fir progeny from US Pacific Northwest collection regions and Denmark for Christmas tree traits. Scand J For Res 32:366–375. https://doi.org/10.1080/02827581.2017.1280077

    Article  Google Scholar 

  • Lange J (1999) Introduction history of cultivated plants in Denmark OT: Kulturplanternes indførselshistorie i Danmark, second edn. DSR forlag, Frederiksberg

  • Larsen JB, Møller IS, Nielsen UB (1997) Noble fir - provenance variation, breeding and choice of seed source. OT: Nobilis - proveniensvariation, forædling og frøkildevalg. Dansk Skovbrugs Tidsskrift 82:193–202

    Google Scholar 

  • Le Corre V, Kremer A (2012) The genetic differentiation at quantitative trait loci under local adaptation. Mol Ecol 21(7):1548–1566. https://doi.org/10.1111/j.1365-294X.2012.05479.x

    Article  PubMed  Google Scholar 

  • Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. Version 1.1

  • Lian C, Goto S, Hogetsu T (2007) Microsatellite markers for Sachalin fir (Abies sachalinensis masters). Mol Ecol Notes 7:896–898

    Article  CAS  Google Scholar 

  • Lindgren D, Mullin TJ (1997) Balancing gain and relatedness in selection. Silvae Genet 46:124–128

    Google Scholar 

  • Lindgren D, Mullin TJ (1998) Relatedness and status number in seed orchard crops. Can J For Res 28:276–283

    Article  Google Scholar 

  • Lstibůrek M, Hodge GR, Lachout P (2015) Uncovering genetic information from commercial forest plantations—making up for lost time using “breeding without breeding”. Tree Genet Genomes 11:55. https://doi.org/10.1007/s11295-015-0881-y

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosca E, Cruz F, Gómez-Garrido J, Bianco L, Rellstab C, Brodbeck S, Csilléry K, Fady B, Fladung M, Fussi B, Gömöry D, González-Martínez SC, Grivet D, Gut M, Hansen OK, Heer K, Kaya Z, Krutovsky KV, Kersten B, Liepelt S, Opgenoorth L, Sperisen C, Ullrich KK, Vendramin GG, Westergren M, Ziegenhagen B, Alioto T, Gugerli F, Heinze B, Höhn M, Troggio M, Neale DB (2019) A reference genome sequence for the European silver fir (Abies alba Mill.): a community-generated genomic resource. G3 (Bethesda) 9(7):2039–2049. https://doi.org/10.1534/g3.119.400083

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, New York

    Book  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) Bottleneck effect and genetic-variability in populations. Evolution 29:1–10

    Article  PubMed  Google Scholar 

  • Nguyen-Dumont T, Pope BJ, Hammet F, Southey MC, Park DJ (2013) A high-plex PCR approach for massively parallel sequencing. Biotechniques 55(2):69–74

    Article  CAS  PubMed  Google Scholar 

  • Nielsen UB (1994) Breeding noble fir (Abies procera Rehder) and Nordmann fir (Abies nordmanniana (Stev.) Spach) for Christmas trees and greenery in Denmark. Proceedings — Nordic Group for Tree Breeding, Forestry Commission, Edinburgh, Scotland, 118–127

  • Nielsen UB (2000) Forædling af nordmannsgran og nobilis: Status og muligheder. 15, 1-54. Hørsholm, Forskningscentret for Skov & Landskab. Pyntegrøntserien

  • Nielsen UB (2003) Valg af danske nobilis provenienser til produktion af klippegrønt - status for produktion af ungdomsgrene. Hørsholm, Skov & Landskab. Pyntegrøntserien

    Google Scholar 

  • Nielsen UB (2007) Genetic variation in characters important for noble fir greenery production. Scand J For Res 22:99–109

    Article  Google Scholar 

  • Nielsen UB, Hansen OK (2012) Genetic worth and diversity across 18 years in a Nordmann fir clonal seed orchard. Ann For Sci 69(2012):69–80

    Article  Google Scholar 

  • Nielsen CCN, Rasmussen HN (2009) Frost hardening and dehardening in Abies procera and other conifers under differing temperature regimes and warm-spell treatments. Forestry. 82(1):43–59. https://doi.org/10.1093/forestry/cpn048

  • Nielsen UB, Xu J, Nielsen KN, Talgø V, Hansen OK, Thomsen IM (2017) Species variation in susceptibility to the fungus Neonectria neomacrospora in the genus Abies. Scand J For Res 32(5):421–431. https://doi.org/10.1080/02827581.2017.1287300

    Article  Google Scholar 

  • Nielsen UB, Xu J, Hansen OK (2020) Genetics in and opportunities for improvement of Nordmann fir (Abies nordmanniana (Steven) Spach) Christmas tree production. Tree Genet Genomes. https://doi.org/10.1007/s11295-020-01461-z

  • Nisbet J (2009) The collector. David Douglas and the natural history of the northwest. Seattle, USA: Sasquatch Books. p. 198–199

  • Parchman TL, Jahner JP, Uckele KA, Galland LM, Eckert AJ (2018) RADseq approaches and applications for forest tree genetics. Tree Genet Genomes 14:39. https://doi.org/10.1007/s11295-018-1251-3

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7(5):e37135. https://doi.org/10.1371/journal.pone.0037135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7(2):e32253. https://doi.org/10.1371/journal.pone.0032253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen KK, Andersen US, Frauenfelder N, Kollmann J (2008) Microsatellite markers for the endangered fir Abies guatemalensis (Pinaceae). Mol Ecol Resour 8:1307–1309

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Lian CL, Hogetsu T, Ide Y (2005) Development and characterization of microsatellite markers in Abies firma and interspecific amplification in other Japanese Abies species. Mol Ecol Notes 5:234–235

    Article  CAS  Google Scholar 

  • Sansaloni C, Petrol C, Laccoud D, Carling J, Deterinh F, Grattapaglia D, Kilian A (2011) Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc 2011 5(Suppl 7):P54

  • SAS Institute Inc. 2013. SAS® 9.4 Statements: reference. Cary, NC

  • Six DL, Vergobbi C, Cutter M (2018) Are survivors different? Genetic-based selection of trees by mountain pine beetle during a climate change-driven outbreak in a high-elevation pine forest. Front Plant Sci 9:993. https://doi.org/10.3389/fpls.2018.00993

    Article  PubMed  PubMed Central  Google Scholar 

  • Telfer E, Graham N, Macdonald L, Li Y, Klápště J, Resende M Jr, Neves LG, Dungey H, Wilcox P (2019) A high-density exome capture genotype-by-sequencing panel for forestry breeding in Pinus radiata. PLoS One 14(9):e0222640. https://doi.org/10.1371/journal.pone.0222640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokarska M, Marshall T, Kowalczyk R, Wojcik JM, Pertoldi C, Kristensen TN, Loeschcke V, Gregersen VR, Bendixen C (2009) Effectiveness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: the case of European bison. Heredity 103:326–332

    Article  CAS  PubMed  Google Scholar 

  • Vendramin GG, Fady B, González-Martinez SC, Hu FS, Scotti I, Sebastiani F, Soto A, Petit RJ (2008) Genetically depauperate but widespread: the case of an emblematic Mediterranean pine. Evolution 62-3:680–688

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population- structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • White TL, Hodge GR (1988) Best linear prediction of breeding values in a forest tree improvement program. Theoret Appl Genetics 76:719–727. https://doi.org/10.1007/BF00303518

    Article  CAS  Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CABI, Wallingford

    Book  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugenics 15:323–354

    Article  CAS  Google Scholar 

  • Xu J, Nielsen UB, Hansen OK (2018a) Ad hoc breeding of Abies bornmülleriana for Christmas tree production using a combination of DNA markers and quantitative genetics—a case study. Tree Genet Genomes 14:5. https://doi.org/10.1007/s11295-018-1276-7

    Article  Google Scholar 

  • Xu J, Hansen OK, Thomsen IM, Nielsen UB (2018b) Genetic variation and genotype by environment interaction in the susceptibility of Abies nordmanniana (Steven) Spach to the fungus Neonectria neomacrospora (Booth & Samuels) Mantiri & Samuels. Ann For Sci 75(1). https://doi.org/10.1007/s13595-018-0689-7

  • Zobel BJ, Talbert JT (1984) Applied forest tree improvement. John Wiley & Sons, Inc., New York

    Google Scholar 

Download references

Acknowledgments

We would like to thank Poul Elgaard, HedeDanmark Seed, who has been a big part of the work of finding production stands, identifying plus tree candidates, and making all the practical arrangements. Thanks also go to the following persons: Gerner Frederiksen for measurements of phenotypic traits in the stands; Lene Hasmark Andersen, Juliane Sørensen, and Maria Meyhoff-Madsen for the needle preparations and DNA extractions; Lars Nørgård Hansen for collecting twigs for both DNA extractions as well as for N. neomacrospora tests; the owners of the production stands for their cooperation in the selection and marking of plus tree candidates as well harvest of scions for the new seed orchard. Furthermore, we are indebted to Foreningen Plan-Danmark, who made the start of this project possible by a donation to develop SNP markers and also to Dalgas Innovation for supporting the N. neomacrospora tests financially. Finally, we thank the associate editor and two anonymous reviewers for the valuable comments that improved the manuscript.

Data archiving statement

The data behind this study is stored at the data storage facility of the University of Copenhagen and can be downloaded from there: https://doi.org/10.17894/ucph.e9dea24d-48e0-42c5-a17f-8b149ffa5309

Funding

The majority of the project has been financed by the Green Development and Demonstration Program (Grønt Udviklings- og Demonstrationsprogram (GUDP)—grant number: 34009-13-0611) of the Danish Ministry of Food, Agriculture, and Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole K. Hansen.

Additional information

Communicated by F. Isik

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, O.K., Lamour, K., Whetten, R. et al. Ad hoc breeding of a genetically depauperate landrace of noble fir (Abies procera Rehder) using SNP genotyping via high-throughput targeted sequencing. Tree Genetics & Genomes 16, 63 (2020). https://doi.org/10.1007/s11295-020-01460-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-020-01460-0

Keywords

Navigation