Skip to main content
Log in

De novo transcriptome assembly based on RNA-seq and dynamic expression of key enzyme genes in loganin biosynthetic pathway of Cornus officinalis

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Cornus officinalis Sieb. et Zucc. is a small tree that is recognized with notable medicinal, economic, and ecological values. It has been used as traditional Chinese medicine (TCM) for thousands of years in China. Modern pharmacological research has revealed that cornel iridoid glycosides (CIGs, e.g., loganin and morroniside) in dried pericarp of C. officinalis have significant medicinal activities for strengthening immune functions. However, little is known on the molecular processes responsible for the production of these compounds. This is partly due to the absence of genomic resources, such as sequences of key enzyme genes in the biosynthetic pathways. In the present study, the transcriptome of C. officinalis was analyzed by the RNA sequencing. A total of 54,827 unigenes were yielded by de novo assembly, of which 31,780 unigenes were successfully annotated. As potential molecular markers, 121, 118, 96, 89, and 82 transcription factors belonged to bHLH, MYB, PHD, WRKY, and AP2-ERF were obtained, respectively. Moreover, the results showing that geraniol 10-hydroxylase (G10H) and secologanin synthase (SLS) were differentially expressed in fruits and leaves during different growing stages were confirmed by qRT-PCR. Furthermore, we identified two distinct expression patterns of G10H and SLS in loganin synthesis of C. officinalis fruits. Collectively, the genomic information and gene expression results presented in this study will be helpful for future studies on gene discovery and molecular process of loganin synthesis in C. officinalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai CK, Yu JR, Yu F, Zheng P (2009) Genetic diversity and construction of primary core germplasm in Cornus offcinalis by ISSR marker. Acta Botan Boreali-Occiden Sin 29:2401–2407

    CAS  Google Scholar 

  • Bai CK, Cao B, Li GS, Mao M (2014) Ecological effects on phenotypic, cytological and biochemical diversity of Cornus officinalis germplasm resources in China and USA. Biochem Syst Ecol 55:241–248

    Article  CAS  Google Scholar 

  • Baik MC, Hoang HD, Hanmer K (1986) A checklist of the Korean cultivated plants. Kulturpflanze 34:69–144

    Article  Google Scholar 

  • Cao B, Bai CK, Zhang LL, Li GS, Mao MC (2016) Modeling habitat distribution of Cornus officinalis with Maxent modeling and fuzzy logics in China. J Plant Ecol 9: 1–12

  • Carrari F, Fernie AR (2006) Metabolic regulation underlying tomato fruit development. J Exp Bot 57:1883–1897

    Article  PubMed  CAS  Google Scholar 

  • Chang SJ, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116

    Article  CAS  Google Scholar 

  • Chen JW, Hou K, Qin P, Liu H, Yi B, Yang W, Wu W (2014) RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes. BMC Genomics 15:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, Chen XY (2007) Plant terpenoids: biosynthesis and ecological functions. J Integr Plant Biol 49:179–186

    Article  CAS  Google Scholar 

  • Collu G, Unver N, Peltenburg-Looman AMG, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase 1, a cytochrome P450 enzyme involved in terpenoidindole alkaloid biosynthesis. FEBS Lett 508:215–220

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM et al (2005) Blast2 GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Ding CK, Chachin K, Ueda Y, Imahori Y, Wang CY (2001) Metabolism of phenolic compounds during loquat fruit development. J Agric Food Chem 49:2883–2888

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Dugé de Bernonville T, Foureau E, Parage C, Lanoue A, Clastre M, Londono MA, Oudin A, Houillé B, Papon N, Besseau S, Glévarec G, Atehortùa L, Giglioli-Guivarc’h N, St-Pierre B, de Luca V, O’Connor SE, Courdavault V (2015) Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics 16:619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gapper NE, McQuinn RP, Giovannoni JJ (2013) Molecular and genetic regulation of fruit ripening. Plant Mol Biol 82:575–591

    Article  PubMed  CAS  Google Scholar 

  • Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138–142

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16(suppl 1):S170–S180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  PubMed  CAS  Google Scholar 

  • Han S, Wu Z, Jin Y, Yang W, Shi H (2015) RNA-seq analysis for transcriptome assembly, gene identification, and SSR mining in ginkgo (Ginkgo biloba L.). Tree Genet Genomes 11:37

    Article  Google Scholar 

  • Hanelt P, Institute of Plant Genetics and Crop Plant Research (IPK) (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 3. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Hsu E (2008) The history of Chinese medicine in the People’s Republic of China and its globalization. East Asian Science, Technology and Society An International Journal 2:465–484

    Google Scholar 

  • Hunter WN (2007) The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem 282:21573–21577

    Article  PubMed  CAS  Google Scholar 

  • Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, van Deynze A, Simon PW (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 12:389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361

    Article  PubMed  CAS  Google Scholar 

  • Kwon SH, Kim JA, Hong SI, Jung YH, Kim HC, Lee SY, Jang CG (2011) Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK, p38, and ERK 1/2 MAPKs in SH-SY5Y cells. Neurochem Int 58:533–541

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Sung SH, Kim SH (2009) Cognitive-enhancing activity of loganin isolated from Cornus officinalis in scopolamine-induced amnesic mice. Arch Pharm Res 32:677–683

    Article  PubMed  CAS  Google Scholar 

  • Li GS, Zhang LJ, Bai CK (2012) Chinese Cornus offcinalis: genetic resources, genetic diversity and core collection. Genet Resour Crop Evol 59:1659–1671

    Article  Google Scholar 

  • Ma W, Wang KJ, Cheng CS, Yan GQ, Lu WL, Ge JF, Cheng YX, Li N (2014) Bioactive compounds from Cornus officinalis fruits and their effects on diabetic nephropathy. J Ethnopharmacol 153:840–845

    Article  PubMed  CAS  Google Scholar 

  • Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • National Pharmacopoeia Committee (2005) Pharmacopoeia of the People’s Republic of China. Chemical Industry Press, Beijing

    Google Scholar 

  • Olson SA (2002) EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite. Brief Bioinform 3:87–91

    Article  PubMed  Google Scholar 

  • Oudin A, Courtois M, Rideau M, Clastre M (2007) The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochem Rev 6:259–276

    Article  CAS  Google Scholar 

  • Peebles CA, Sander GW, Hughes EH et al (2011) The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoidindole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13:234–240

    Article  PubMed  CAS  Google Scholar 

  • Phillips MA, León P, Boronat A, Rodríguez-Concepción M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619–623

    Article  PubMed  CAS  Google Scholar 

  • Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445

    Article  PubMed  CAS  Google Scholar 

  • Poupin MJ, Federici F, Medina C, Matus JT, Timmermann T, Arce-Johnson P (2007) Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene 404:10–24

    Article  PubMed  CAS  Google Scholar 

  • Pulido P, Perello C, Rodriguez-Concepcion M (2012) New insights into plant isoprenoid metabolism. Mol Plant 5:964–967

    Article  PubMed  CAS  Google Scholar 

  • Saradhuldhat P, Paull RE (2007) Pineapple organic acid metabolism and accumulation during fruit development. Sci Hortic 112:297–303

    Article  CAS  Google Scholar 

  • Schäffer AA, Wolf IY, Ponting PC et al (1999) IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed position-specific score matrices. Bioinformatics 15:1000–1011

    Article  PubMed  Google Scholar 

  • Sun FL, Wang W, Zuo W, Xue JL, Xu JD, Ai HX, Zhang L, Wang XM, Ji XM (2014) Promoting neurogenesis via Wnt/β-catenin signaling pathway accounts for the neurorestorative effects of morroniside against cerebral ischemia injury. Eur J Pharmacol 738:214–221

    Article  PubMed  CAS  Google Scholar 

  • Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L (2007) Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoidindole alkaloid biosynthesis. Biochim Biophys Acta 1769:139–148

    Article  PubMed  CAS  Google Scholar 

  • Tohge T, Alseekh S, Fernie AR (2014) On the regulation and function of secondary metabolism during fruit development and ripening. J Exp Bot 65:4599–4611

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Liu Y, Cai Y (2010) Cloning and functional analysis of geraniol 10-hydroxylase, a cytochrome P450 from Swertia mussotii Franch. Biosci Biotechnol Biochem 74:1583–1590

    Article  PubMed  CAS  Google Scholar 

  • Xie C, Mao X, Huang J (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39(Web Server issue):W316–W322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu HQ, Hao HP (2004) Effects of iridoid total glycoside from Cornus officinalis on prevention of glomerular over expression of transforming growth factor beta 1 and matrixes in an experimental diabetes model. Biol Pharm Bull 27:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao LH, Ding YX, Zhang L, Li L (2010) Cornel iridoid glycoside improves memory ability and promotes neuronal survival in fimbria–fornix transected rats. Eur J Pharmacol 647:68–74

    Article  PubMed  CAS  Google Scholar 

  • Zhao DY, Hamilton JP, Pham GM, Crisovan E, Wiegert-Rininger K, Vaillancourt B, DellaPenna D, Buell CR (2017) De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. Gigascience 6:1–7

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. Yinghua Zha and Lei Zhang for their helpful revision on this manuscript. We thank Drs. Robin Buell and Dongyan Zhao for their kind assistance on genome sequences. We also thank Professor Vincent Courdavault for the technical support on the figures. This work was supported by the Innovation Team Project of Breeding and Standardized Production of New Varieties of Traditional Chinese Medicine in Fundamental Research Funds of the Central Universities [GK201801008 to CKB], the National Natural Science Foundation of China [31100241 to CKB], and the Fundamental Research Funds for the Central Universities [GK201503046 to GSL].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengke Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Data archiving statement

The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus (Edgar et al. 2002) and are accessible through GEO Series accession number GSE108216 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108216).

Additional information

Communicated by C. Dardick

Electronic supplementary material

Fig. S1

(DOCX 158 kb)

Fig. S2

(DOCX 5017 kb)

Fig. S3

(DOCX 787 kb)

Fig. S4

(DOCX 1428 kb)

Fig. S5

(DOCX 114 kb)

Fig. S6

(DOCX 35 kb)

Fig. S7

(DOCX 45.1 kb)

Fig. S8

(DOCX 37.3 kb)

Table S1

(XLS 28 kb)

Table S2

(XLS 61 kb)

Table S3

(XLS 3092 kb)

Table S4

(DOCX 18.1 kb)

Table S5

(XLS 34 kb)

Table S6

(XLS 19293 kb)

Table S7

(DOCX 17.1 kb)

Table S8

(XLS 4312 kb)

Table S9

(XLS 665 kb)

Table S10

(XLS 1929 kb)

Table S11

(XLS 1670 kb)

Table S12

(XLS 350 bytes)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Wu, Y., Cao, B. et al. De novo transcriptome assembly based on RNA-seq and dynamic expression of key enzyme genes in loganin biosynthetic pathway of Cornus officinalis. Tree Genetics & Genomes 14, 57 (2018). https://doi.org/10.1007/s11295-018-1270-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1270-0

Keywords

Navigation