Skip to main content

Advertisement

Log in

Hybrid larch heterosis: for which traits and under which genetic control?

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Despite the interest foresters have for inter-specific hybrid trees, still little is known about their quantitative genetics. This is especially true for the hybrid (HL) between Larix decidua (EL) and L. kaempferi (JL). Long-term, well-designed, multi-site experiments are necessary to estimate the parameters required for HL breeding programs. This paper presents the results from a diallel mating trial between nine EL and nine JL, set up in three contrasted sites. Growth traits (height, circumference), quality traits (wood density, stem form, heartwood proportion), and bud flush were measured from plantation to up to 18 years after plantation. Wood density and heartwood proportion were assessed using increment cores. We did a spatial analysis to take into account environmental heterogeneity at the tree level, and we fitted a multi-trait, Bayesian MCMC (Markov chain Monte Carlo) genetic model. Our study confirmed, in most situations, that HL expressed heterosis over its best parent for growth traits taking advantage of an early faster growth, with no loss in wood density. However, growth traits showed low levels of heritability. On the other hand, bud flush and stem flexuosity had high heritabilities, and wood density was clearly under JL control. Site-dependent heritabilities were expressed by EL. Additive genetic correlations were presented. The traits with high heritabilities showed high correlation between their performances in pure species and in hybridization, as well as high across-site correlations. The discussion focused on the interest of these genetic parameters for the hybrid larch breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baltunis BS, Greenwood MS, Eysteinsson T (1998) Hybrid vigor in Larix: growth of intra-and interspecific hybrids of Larix decidua, L. laricina, and L. kaempferi after 5-years. Silvae Genet 47:288–293

    Google Scholar 

  • Baranwal VK, Mikkilineni V, Zehr UB, Tyagi AK, Kapoor S (2012) Heterosis: emerging ideas about hybrid vigour. J Exp Bot 63:6309–6314

    Article  CAS  PubMed  Google Scholar 

  • Bouvet JM, Vigneron P, Gouma R, Saya A (2003) Trends in variances and heritabilities with age for growth traits in eucalyptus spacing experiments. Silvae Genet 52:121–133

    Google Scholar 

  • Cappa EP, Muñoz F, Sánchez L, Cantet RJC (2015) A novel individual-tree mixed model to account for competition and environmental heterogeneity: a Bayesian approach. Tree Genet Genomes 11:120

    Article  Google Scholar 

  • Charron S, Jourez B, Marchal M, Hébert J (2003) Etude comparative des caractéristiques physiques et mécaniques du bois des mélèzes d’Europe (Larix decidua Mill.), du Japon (Larix kaempferi (Lambert) Carr.) et de leur hybride (Larix × eurolepis Henry). Biotechnol Agron Société Environ 7:5–16

    Google Scholar 

  • Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14:471–482

    Article  CAS  PubMed  Google Scholar 

  • Cornelius J (1994) Heritabilities and additive genetic coefficients of variation in forest trees. Can J For Res 24:372–379

    Article  Google Scholar 

  • Cros D (2014) Etude des facteurs contrôlant l’efficacité de la sélection génomique chez le palmier à huile (Elaeis guineensis Jacq.). Dissertation, Montpellier SupAgro

  • Dieters MJ, Dungey HS (2000) Relationship between the relative importance of non-additive variance and the genetic correlation between hybrid and parental populations in some Pinus species. In: Dungey HS, Dieters MJ, Nikles DG (eds) Hybrid breeding and genetics of forest trees proceedings of QFRI/CRC-SPF symposium, 9-14th April 2000 Noosa, Queensland, Australia. Department of Primary Industries, Brisbane, pp 87-92

  • Dungey HS (2001) Pine hybrids—a review of their use performance and genetics. For Ecol Manag 148:243–258. doi:10.1016/S0378-1127(00)00539-9

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow

    Google Scholar 

  • Gallais A (2009) Hétérosis et variétés hybrides en amélioration des plantes. Quae, Versailles

  • Gauchat ME, Pâques LE (2011) Indirect prediction of bud flushing from ex situ observation in hybrid larch (Larix decidua × L. kaempferi) and their parents. Environ Exp Bot 70:121–130. doi:10.1016/j.envexpbot.2010.08.001

    Article  Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal 1:515–534

    Article  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New York

    Google Scholar 

  • Gianola D, Im S, Macedo FW (1989) A framework for prediction of breeding value. In: Gianola D, Hammond K (eds) Advances in statistical methods for genetic improvement of livestock. Springer-Verlag, Berlin, pp 210–238

    Google Scholar 

  • Greenwood MS, Roth BE, Maass D, Irland LC (2015) Near rotation-length performance of selected hybrid larch in Central Maine, USA. Silvae Genet 64:73–80

    Google Scholar 

  • Hadfield J (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22

    Article  Google Scholar 

  • Hinkelmann K (1974) Two-level diallel cross experiments. Silvae Genet 23:18–22

    Google Scholar 

  • Kain DP (2003) Genetic parameters and improvement strategies for the Pinus elliottii var. elliottii × Pinus caribaea var. hondurensis hybrid in Queensland, Australia. Dissertation, Australian National University

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman & Hall, London

    Book  Google Scholar 

  • Keiding H, Olsen HC (1965) Assessment of stem form in clones and progenies of larch. Silvae Genet 14:115–122

    Google Scholar 

  • Knight R (1973) The relation between hybrid vigour and genotype-environment interactions. Theor Appl Genet 43:311–318

    Article  CAS  PubMed  Google Scholar 

  • Li B, Wu R (1997) Heterosis and genotype × environment interactions of juvenile aspens in two contrasting sites. Can J For Res 27:1525–1537

    Google Scholar 

  • Li B, Wu R (1996) Genetic causes of heterosis in juvenile aspen: a quantitative comparison across intra- and inter-specific hybrids. Theor Appl Genet 93:380–391

    Article  CAS  PubMed  Google Scholar 

  • Li B, Wyckoff GW, Einspahr DW (1993) Hybrid aspen performance and genetic gains. North J Appl For 10:117–122

    Google Scholar 

  • Lin Y, Yang H, Ivković M, Gapare WJ, Matheson AC, Wu HX (2013) Effect of genotype by spacing interaction on radiata pine genetic parameters for height and diameter growth. For Ecol Manag 304:204–211

    Article  Google Scholar 

  • Liu C, Rubin DB, Wu YN (1998) Parameter expansion to accelerate EM: the PX-EM algorithm. Biometrika 85:755–770

    Article  Google Scholar 

  • Lo LL, Fernando RL, Grossman M (1997) Genetic evaluation by BLUP in two-breed terminal crossbreeding systems under dominance. J Anim Sci 75:2877–2884

    Article  CAS  PubMed  Google Scholar 

  • Marchal A, Legarra A, Tisné S, Carasco-Lacombe C, Manez A, Suryana E, Omoré A, Nouy B, Durand-Gasselin T, Sánchez L, Bouvet J-M, Cros D (2016) Multivariate genomic model improves analysis of oil palm (Elaeis guineensis Jacq.) progeny tests. Mol Breed 36, 2. doi:10.1007/s11032-015-0423-1

  • Muir WM (2005) Incorporation of competitive effects in forest tree or animal breeding programs. Genetics 170:1247–1259. doi:10.1534/genetics.104.035956

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz F, Sánchez L (2015) breedR: statistical methods for Forest genetic resources analysts. Institut National de la Recherche Agronomique, Unité de recherche Amélioration, Génétique et Physiologie Forestières, Ardon

  • Mutete P, Murepa R, Gapare WJ (2015) Genetic parameters in subtropical pine F1 hybrids: heritabilities, between-trait correlations and genotype-by-environment interactions. Tree Genet Genomes 11:93. doi:10.1007/s11295-015-0926-2

    Article  Google Scholar 

  • Nikles DG, Griffin AR (1991) Breeding hybrids of forest trees: definitions, theory, some practical examples, and guidelines on strategy with tropical acacias. ACIAR Proceedings 37:101-109

  • Nkongolo KK, Klimaszewska K (1995) Cytological and molecular relationships between Larix decidua, L. leptolepis and Larix × eurolepis: identification of species-specific chromosoms and synchronization of mitotic cells. Theor Appl Genet 90:827–834

    Article  CAS  PubMed  Google Scholar 

  • Nychka D, Furrer R, Paige J, Sain S (2015) Fields: tools for spatial data. University Corporation for Atmospheric Research, Boulder

  • Pâques LE (2002) Heterosis in interspecific hybrids between European and Japanese larch. In: Pâques LE (ed) Improvement of larch (Larix sp.) for better growth, stem form and wood quality, INRA. Gap (Hautes-Alpes), Auvergne-Limousin, France, pp 155-163

  • Pâques LE (2013) Larches (Larix sp.). In: Pâques LE (ed) Forest tree breeding in Europe. Springer Science & Business Media, Dordrecht, Heidelberg, New York, London, p 13–122

  • Pâques LE (1992a) Performance of vegetatively propagated Larix decidua, L. kaempferi and L. laricina hybrids. Ann Sci For 49:63–74

    Article  Google Scholar 

  • Pâques LE (1992b) First evaluation of genetic parameters in a factorial mating design with hybrid larch (Larix decidua X Larix kaempferi), In Weisgerber H (ed) Results and future trends in larch breeding on the basis of provenance research, IUFRO meeting of the IUFRO working party S2.02-07, IUFRO, pp. 136-145.

  • Pâques LE (1989) A critical review of larch hybridization and its incidence on breeding strategies. Ann Sci For 46:141–153

    Article  Google Scholar 

  • Pâques LE (2004) Roles of European and Japanese larch in the genetic control of growth, architecture and wood quality traits in interspecific hybrids (Larix × eurolepis Henry). Ann For Sci 61:25–33. doi:10.1051/forest:2003081

    Article  Google Scholar 

  • Pâques LE, Charpentier J-P (2015) Perspectives for genetic improvement in heartwood size and extractive content in relation to natural durability and aesthetics in interspecific hybrid larch (Larix × eurolepis). Eur J For Res 134:857–868. doi:10.1007/s10342-015-0895-x

    Article  Google Scholar 

  • Perron M (2008) A strategy for the second breeding cycle of Larix × marschlinsii in Québec, Canada including experiments to guide interspecific tree breeding programme. Silvae Genet 57:282–291

    Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Regent Instruments Canada Inc (2008) WinDENDRO for tree-ring analysis. Regent Instruments Canada Inc., Québec

  • Rondeux J (2003) Les mélèzes, un nouveau défi pour la sylviculture des résineux en Wallonie. In: Les cahiers forestiers de Gembloux. Faculté des Sciences Agronomiques, Unité de Gestion et Economie forestières, Gembloux, Belgique

  • Shull GH (1948) What is “heterosis” ? Genetics 33:439–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen D, Gianola D (2007) Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer Science & Business Media, New York

    Google Scholar 

  • Stuber CW, Cockerham CC (1966) Gene effects and variances in hybrid populations. Genetics 54:1279–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sylvestre-Guinot G, Pâques LE, Delatour C (1999) Hybrid larch resistance to Lachnellula willkommi. Ann For Sci 56:485–492

    Article  Google Scholar 

  • Wei X, Borralho NMG (1998) Use of individual tree mixed models to account for mortality and selective thinning when estimating base population genetic parameters. For Sci 44:246–253

    Google Scholar 

  • Weng Q, He X, Li F, Li M, Yu X, Shi J, Gan S (2014) Hybridizing ability and heterosis between Eucalyptus urophylla and E. tereticornis for growth and wood density over two environments. Silvae Genet 63:15–24

    Google Scholar 

  • Wolak ME (2012) nadiv: an R package to create relatedness matrices for estimating non-additive genetic variances in animal models. Methods Ecol Evol 3:792–796

    Article  Google Scholar 

  • Zobel B, Talbert J (1984) Applied forest tree improvement. John Wiley & Sons, New York

    Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge staff of INRA experimental units (UE GBFOR and UE BIOGECO) who have established, maintained, and assessed the field trials as well as collected the increments cores. The authors thank Genobois platform technical staff who have prepared and X-rayed wood samples and provided microdensitometry profiles. Thanks also to Jarrod Hadfield for his kind help with the package MCMCglmm and to Pierre de Villemereuil, Luis Varona, and Sebastián Munilla for their advices with Bayesian statistics. F. Muñoz was partially funded by research grant MTM2013-42323-P from the Spanish Ministry of Economy and Competitiveness and ACOMP/2015/202 from Generalitat Valenciana (Spain). F. Muñoz and L. Sánchez received funding from the European Union’s Seventh Framework Program for research, technological development, and demonstration under grant agreement no. 284181 (“Trees4Future”). The authors also thank two anonymous reviewers and an associate editor for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc E. Pâques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Our datasets are being submitted to GnpIS INRA Repository and the accession numbers will be supplied once available. We acknowledge that the final acceptance of a manuscript into TGG is contingent on all relevant accession numbers being made available in text.

Additional information

Communicated by J. Beaulieu

Electronic supplementary material

Appendix 1

Description of the set-up and data (DOC 307 kb).

Appendix 2

Extra results (DOC 186 kb).

Appendix 3

Performances of the parents predicted by model M2 (DOC 283 kb).

Appendix 4

Comparison between the heritabilities estimated in this study and the heritabilities of the literature reviewed by Pâques (2013) (DOC 104 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchal, A., Muñoz, F., Millier, F. et al. Hybrid larch heterosis: for which traits and under which genetic control?. Tree Genetics & Genomes 13, 92 (2017). https://doi.org/10.1007/s11295-017-1177-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1177-1

Keywords

Navigation