Skip to main content

Advertisement

Log in

Extensive pollen flow in a natural fragmented population of Patagonian cypress Austrocedrus chilensis

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Habitat fragmentation might significantly affect mating and pollen dispersal patterns in plant populations, contributing to the decline of remnant populations. However, wind-pollinated species are able to disperse pollen at longer distances after opening of the canopy. Our objectives were to characterize the mating system parameters and to estimate the average distance of effective pollen dispersal in the wind-pollinated conifer Austrocedrus chilensis. We sampled 19 “mother trees,” 200 progeny, and 81 additional adults (both male and female), in a fragmented population at the Argentinean Patagonian steppe. We registered the spatial positions of individuals and genotyped all samples with five microsatellite markers. We found a high genetic diversity, a moderated rate of biparental inbreeding (t m− t s = 0.105), and a complete absence of correlated paternity (r p = −0.015). The effective number of pollen donors contributing to a single mother (N ep) was 13.9. Applying TWOGENER, we estimated a low but significant differentiation among the inferred pollen pools (ΦFT = 0.036, p = 0.001) and a very large average pollen dispersal distance (d = 1,032.3 m). The leptokurtic distribution (b = 0.18) presumes a potential for even larger dispersal distances. The high genetic diversity, the mating patterns, and the extensive pollen dispersal presume that habitat fragmentation did not have a negative impact on pollen movement in this population of A. chilensis. Genetic connectivity among fragmented populations scattered in the Patagonian region is possible, and we stress the need of management policies at the landscape level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. U.S. Govt. Print. Off, Washington

    Google Scholar 

  • Albaladejo RG, Guzmán B, Gonzalez-Martinez SC, Aparicio A (2012) Extensive pollen flow but few pollen donors and high reproductive variance in an extremely fragmented landscape. PLoS One 7(11):e49012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Aldrich PR, Hamrick JL (1998) Reproductive dominance of pasture trees in a fragmented tropical forest mosaic. Science 281:103–105

    Article  PubMed  CAS  Google Scholar 

  • Arana MV, Buonamici A, Sebastiani F, Alia R, Gallo LA, Marchelli P, Moreno C, Vendramin GG (2008) Development of highly polymorphic tetranucleotide microsatellite markers in Austrocedrus chilensis. Mol Ecol Resour 8(4):887–889

    Article  PubMed  CAS  Google Scholar 

  • Arana MV, Gallo LA, Vendramin GG, Pastorino MJ, Sebastiani F, Marchelli P (2010) High genetic variation in marginal fragmented populations at extreme climatic conditions of the Patagonian Cypress Austrocedrus chilensis. Mol Phylogenet Evol 54(3):941–949

    Article  PubMed  CAS  Google Scholar 

  • Ashley MV (2010) Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Crit Rev Plant Sci 29:148–161

    Article  CAS  Google Scholar 

  • Austerlitz F, Dick CW, Dutech C, Klein EK, Oddou-Muratorio S, Smouse PE, Sork VL (2004) Using genetic markers to estimate the pollen dispersal curve. Mol Ecol 13(4):937–954

    Article  PubMed  Google Scholar 

  • Austerlitz F, Dutech C, Smouse PE, Davis F, Sork VL (2007) Estimating anisotropic pollen dispersal: a case study in Quercus lobata. Heredity 99(2):193–204

    Article  PubMed  CAS  Google Scholar 

  • Bacles CFE, Ennos R (2008) Paternity analysis of pollen-mediated gene flow for Fraxinus excelsior L. in a chronically fragmented landscape. Heredity 101:368–380

    Article  PubMed  CAS  Google Scholar 

  • Bittencourt JV, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small, fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity 99(6):580–591

    Article  PubMed  CAS  Google Scholar 

  • Bran D, Pérez A, Barrios D, Pastorino M, Ayesa J (2002) Proyecto: Eco-Región Valdiviana: Distribución actual de los bosques de “Cipres de la Cordillera” (Austrocedrus chilensis). Escala 1:250.000. Informe preliminar. INTA EEA Bariloche, APN, Fundación Vida Silvestre Argentina. p. 13

  • Burczyk J, Adams WT (2000) Magnitude and implications of gene flow in gene conservation reserves. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics: principles and practice. CSIRO, Collingwood, pp 215–224

    Google Scholar 

  • Burczyk J, Adams WT, Shimizu JY (1996) Mating patterns and pollen dispersal in a natural knobcone pine (Pinus attenuate Lemmon.) stand. Heredity 77(3):251–260

    Google Scholar 

  • Burczyk J, DiFazio SP, Adams WT (2004) Gene flow in forest trees: how far do genes really travel? For Genet 11(3–4):179–192

    CAS  Google Scholar 

  • Bustos C (2004) Resúmenes meteorológicos desde el año 1993 al 2004. Comunicaciones técnicas ISSN 1667–4014 INTA EEA Bariloche

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  PubMed  CAS  Google Scholar 

  • Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    Article  PubMed  CAS  Google Scholar 

  • Clark JS (1998) Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Am Nat 152(2):204–224

    Article  PubMed  CAS  Google Scholar 

  • Córtes MC, Uriarte M, Lemes MR, Gribel R, Kress WJ, Smouse PE, Bruna EM (2013) Low plant density enhances gene dispersal in the Amazonian understory herb Heliconia acuminata. Mol Ecol 22:5716–5729

    Article  PubMed  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  PubMed  CAS  Google Scholar 

  • Dick CW (2001) Genetic rescue of remnant tropical trees by an alien pollinator. Proc Roy Soc Lond Ser B 268:2391–2396

    Article  CAS  Google Scholar 

  • Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12(3):753–764

    Article  PubMed  Google Scholar 

  • Donoso C, Escobar B, Pastorino M, Gallo L, Aguayo G (2006) Austrocedrus chilensis (D Don) Pic. Ser. et Bizarri. Ciprés de la Cordillera. In: Donoso C (ed) Las Especies Arbóreas de Los Bosques Templados de Chile Y Argentina. Autoecología. Marisa Cuneo Ediciones, Valdivia, pp 54–67

    Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91(8):1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72(3):250–259

    Article  Google Scholar 

  • Fuchs EJ, Hamrick JL (2011) Mating system and pollen flow between remnant populations of the endangered tropical tree, Guaiacum sanctum (Zygophyllaceae). Conserv Genet 12:175–185

    Article  Google Scholar 

  • Gallo L, Pastorino M, Donoso C (2004) Variación en Austrocedrus chilensis (D. Don) Pic. Ser et Bizzarri (Ciprés de la Cordillera). In: Donoso C, Ipinza R, Premoli A, Gallo L (eds) Variación intraespecífica en las especies arbóreas de los bosques templados de Chile y Argentina. Chile Editorial Universitaria, Santiago, pp 233–252

    Google Scholar 

  • Hamrick JL, Nason JD (2000) Gene flow in forest trees. In: Boshier D, Boyle T, Young A (eds) Forest conservation genetics: principles and practice. CABI Publishing, Oxon, pp 81–90

    Google Scholar 

  • Hardy OJ (2009) How fat is the tail? Heredity 103:437–438

    Article  PubMed  Google Scholar 

  • Harrison HB, Saenz-Agudelo P, Planes S, Jones GP, Berumen ML (2013) Relative accuracy of three common methods of parentage analysis in natural populations. Mol Ecol 22:1158–1170

    Article  PubMed  Google Scholar 

  • Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci U S A 103(21):8096–8100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet 7:991–995

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Klein EK, Lavigne C, Gouyon PH (2006) Mixing of propagules from discrete sources at long distance: comparing a dispersal tail to an exponential. BMC Ecol 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchelli P, Smouse P, Gallo L (2012) Short-distance pollen dispersal for an outcrossed, wind-pollinated southern beech (Nothofagus nervosa (Phil.) Dim. et Mil.). Tree Genet Genomes 8:1123–1134

    Article  Google Scholar 

  • Moreno C (2012) Estudio del flujo génico mediado por polen en poblaciones fragmentadas de Araucaria araucana. PhD, Universidad Nacional del Comahue, Centro regional Universitario Bariloche

  • Murawski DA, Hamrick JL (1991) The effect of the density of flowering individuals on the mating systems of nine tropical tree species. Heredity 67(2):167–174

    Article  Google Scholar 

  • Nathan R, Katul GG (2005) Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind. Proc Natl Acad Sci U S A 102(23):8251–8256

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70(12):3321–3323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • O’Connell LM, Mosseler A, Rajora OP (2006) Impacts of forest fragmentation on the mating system and genetic diversity of white spruce (Picea glauca) at the landscape level. Heredity 97(6):418–426

    Article  PubMed  Google Scholar 

  • Oddou-Muratorio S, Klein EK, Austerlitz F (2005) Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. II. Pollen dispersal and heterogeneity in mating success inferred from parent-offspring analysis. Mol Ecol 14(14):4441–4452

    Article  PubMed  CAS  Google Scholar 

  • Okubo A, Levin SA (1989) A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70(2):329–338

    Article  Google Scholar 

  • Pastorino MJ, Gallo LA (2000) Variación geográfica en peso de semilla en poblaciones naturales argentina de “Ciprés de la Cordillera”. Bosque 21(2):95–109

    Google Scholar 

  • Pastorino MJ, Gallo LA (2002) Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean-Patagonian forest. J Biogeogr 29:1167–1178

    Article  Google Scholar 

  • Pastorino MJ, Gallo LA (2006) Mating system in a low-density natural population of the dioecious wind-pollinated Patagonian Cypress. Genetica 126:315–321

    Article  PubMed  Google Scholar 

  • Pastorino MJ, Gallo LA (2009) Preliminary operational genetic management units of a highly fragmented forest tree species of southern South America. For Ecol Manag 257(12):2350–2358

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  • Petit RJ, Hampe A, Cheddadi R (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon 54(4):877–885

    Article  Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228

    Article  PubMed  Google Scholar 

  • Robledo-Arnuncio JJ (2011) Wind pollination over mesoscale distances: an investigation with Scots pine. New Phytol 190(1):222–233

    Article  PubMed  Google Scholar 

  • Robledo-Arnuncio JJ, Gil L (2005) Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94(1):13–22

    Article  PubMed  CAS  Google Scholar 

  • Robledo-Arnuncio JJ, Alia R, Gil L (2004a) Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris. Mol Ecol 13(9):2567–2577

    Article  PubMed  CAS  Google Scholar 

  • Robledo-Arnuncio JJ, Smouse PE, Gil L, Alía R (2004b) Pollen movement under alternative silvicultural practices in native populations of Scots pine (Pinus sylvestris L.) in central Spain. For Ecol Manag 197(1–3):245–255

    Article  Google Scholar 

  • Robledo-Arnuncio JJ, Austerlitz F, Smouse PE (2006) A new method of estimating the pollen dispersal curve independently of effective density. Genetics 173(2):1033–1045

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Robledo-Arnuncio JJ, Austerlitz F, Smouse PE (2007) POLDISP: a software package for indirect estimation of contemporary pollen dispersal. Mol Ecol Notes 7(5):763–766

    Article  Google Scholar 

  • Sampson JF, Byrne M, Yates CJ, Gibson N, Thavornkanlapachai R, Stankowski S, MacDonald B, Bennett I (2014) Contemporary pollen-mediated gene inmigration reflects the historical isolation of a rare, animal-pollinated shrub in a fragmented landscape. Heredity 112:172–181

    Article  PubMed  CAS  Google Scholar 

  • Schlegel F (1962) Hallazgo de un bosque de cipreses cordilleranos en la provincia de Aconcagua. Bol Univ Chil 32:43–46

    Google Scholar 

  • Sherwin WB, Jabot F, Rush R, Rossetto M (2006) Measurement of biological information with applications from genes to landscapes. Mol Ecol 15(10):2857–2869

    Article  PubMed  Google Scholar 

  • Shohami D, Nathan R (2014) Fire-induced population reduction and landscape opening increases gene flow via pollen dispersal in Pinus halepensis. Mol Ecol 23:70–81

    Article  PubMed  CAS  Google Scholar 

  • Slate J, Marshall T, Pemberton J (2000) A retrospective assessment of the accuracy of the paternity inference program CERVUS. Mol Ecol 9(6):801–808

  • Smouse PE, Dyer RJ, Westfall RD, Sork VL (2001) Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55(2):260–271

    Article  PubMed  CAS  Google Scholar 

  • Sork VL, Smouse PE (2006) Genetic analysis of landscape connectivity in tree populations. Landsc Ecol 21(6):821–836

    Article  Google Scholar 

  • Sork VL, Davis FW, Smouse PE, Apsit VJ, Dyer RJ, Fernandez JF, Kuhn B (2002) Pollen movement in declining populations of California Valley oak, Quercus lobata: where have all the fathers gone? Mol Ecol 11:1657–1668

    Article  PubMed  CAS  Google Scholar 

  • Tackenberg O (2003) Modeling long-distance dispersal of plant diaspores by wind. Ecol Monogr 73(2):173–189

    Article  Google Scholar 

  • Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson B, Wills D, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Veblen TT, Burns BR, Kitzberger T, Lara A, Villalva R (1995a) The ecology of the conifers of southern South America. In: Enright NJ, Hill RS (eds) Ecology of southern conifers. Melbourne University Press, Melbourne, pp 120–155

    Google Scholar 

  • Veblen TT, Kitzberger T, Burns BR, Rebertus A (1995b) Perturbaciones y dinámica de regeneración en Bosques Andinos del sur de Chile y Argentina. In: Armesto JJ, Villagrán C, Kalin Arroyo MT (eds) Ecología de los Bosques nativos de Chile. Editorial Universitaria, Santiago, pp 169–198

    Google Scholar 

  • Wang J, Kang M, Gao P, Huang H (2010) Contemporary pollen flow and mating patterns of a subtropical canopy tree Eurycorymbus cavaleriei in a fragmented agricultural landscape. For Ecol Manag 260:2180–2188

    Article  Google Scholar 

  • White GM, Boshier D, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci U S A 99:2038–2042

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Williams CG (2010) Long-distance pine pollen still germinates after meso-scale dispersal. Am J Bot 97:846–855

    Article  PubMed  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11(10):413–418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. El Mujtar and Z. Gallego Vega for laboratory assistance, Abel Martínez for nursery help, and E. Gayone for computational calculations. The comments of two anonymous reviewers greatly improved the first version of this manuscript. This study was supported by Fundación BBVA through the project “Fragmentación y conservación de recursos genéticos de coníferas” and CONICET (PIP5451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Marchelli.

Additional information

Communicated by G. G. Vendramin

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colabella, F., Gallo, L.A., Moreno, A.C. et al. Extensive pollen flow in a natural fragmented population of Patagonian cypress Austrocedrus chilensis . Tree Genetics & Genomes 10, 1519–1529 (2014). https://doi.org/10.1007/s11295-014-0775-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0775-4

Keywords

Navigation