Skip to main content
Log in

Species and clone-dependent effects of tilapia fish (Cichlidae) on the morphology and life-history of temperate and tropical Daphnia

  • Original Article
  • Published:
Ecological Research

Abstract

In aquatic systems, tilapia introductions may result in marked changes in the structure of prey communities. In this study, we experimentally examined the effects of tilapia-mediated water at the individual and population levels of prey by exposing three Daphnia species to predation cues. We hypothesized that tilapia-mediated water determines reduced age and size at primipara, greater and faster reproduction, enhanced intrinsic rates of population increase (r), and longer tail spines in Daphnia; but that the magnitude of these changes would be species and clone-dependent. When three tropical D. laevis and one temperate D. similis clones were exposed to predation cues, adaptive changes were observed in some of the aforementioned parameters for each clone. The three D. laevis clones exhibited changes in all life-history and morphological measures. Temperate Daphnia spinulata displayed no changes but decreased r values in the presence of predators. The observed changes in the species and clones tested here suggest that, overall, both temperate and tropical Daphnia can detect and adaptively react to the risk of tilapia predation. However, only a fraction of the possible defenses may be displayed by individual clones. In contrast, D. spinulata seems more vulnerable to tilapia predation, given its long body length and absence of adaptive changes. Our study indicates that Daphnia can respond to tilapia-mediated water, and that interspecific and clonal variation exists between temperate and tropical species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Attayde JL, Menezes RF (2008) Effects of fish biomass and planktivore type on plankton communities. J Plankton Res 30:885–892

    Article  Google Scholar 

  • Boersma M, Spaak P, De Meester L (1998) Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses. Am Nat 152:237–248

    Article  CAS  PubMed  Google Scholar 

  • Bronmark C, Hansson LA (2000) Chemical communication in aquatic systems: an introduction. Oikos 88:103–109

    Article  Google Scholar 

  • Canonico GC, Arthington AH, McCrary JK, Thieme ML (2005) The effects of introduced tilapias on native biodiversity. Aquat Conserv 15:463–483

    Article  Google Scholar 

  • Carter MJ, Silva-Flores P, Oyanedel JP, Ramos-Jiliberto R (2013) Morphological and life-history shifts of the exotic cladoceran Daphnia exilis in response to predation risk and food availability. Limnologica 43:203–209

    Article  Google Scholar 

  • Castro BB, Consciência S, Gonçalves F (2007) Life history responses of Daphnia longispina to mosquito fish (Gambusia holbrooki) and pumpkinseed (Lepomis gibbosus) kairomones. Hydrobiologia 594:165–174

    Article  Google Scholar 

  • Chivers DP, Smith RJF (1998) Chemical alarm signalling in aquatic predator–prey systems: a review and prospectus. Ecoscience 5:338–352

    Google Scholar 

  • De Meester L, Weider LJ, Tollrian R (1995) Alternative antipredator defenses and genetic-polymorphism in a pelagic predator–prey system. Nature 378:483–485

    Article  Google Scholar 

  • Dzialowski AR, Lennon JT, O’Brien WJ, Smith VH (2003) Predator-induced phenotypic plasticity in the exotic cladoceran Daphnia lumholtzi. Freshw Biol 48:1593–1602

    Article  Google Scholar 

  • Elhigzi FAR, Haider SA, Larsson P (1995) Interactions between Nile tilapia (Oreochromis niloticus) and cladocerans in ponds (Khartoum, Sudan). Hydrobiologia 307:263–272

    Article  Google Scholar 

  • Eskinazi-Sant’Anna EM, Schettino M, Menéndez RM, Guimarães AS, Maia-Barbosa PM (2010) Use of Daphnia spinulata Birabén, 1927 (Crustacea, Cladocera) in the aquarium trade: a potential risk of a new bioinvasion into Brazilian continental waters. Acta Limnol Bras 22:102–104

    Article  Google Scholar 

  • Esselman PC, Schmitter-Soto JJ, Allan JD (2013) Spatiotemporal dynamics of the spread of African tilapias (Pisces: Oreochromis spp.) into rivers of northeastern Mesoamerica. Biol Invasions 15:1471–1491

    Article  Google Scholar 

  • Fisk DL, Latta LC, Knapp RA, Pfrender ME (2007) Rapid evolution in response to introduced predators I: rates and patterns of morphological and life-history trait divergence. BMC Evol Biol 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurgel JJS, Fernando CH (1994) Fisheries in semi-arid northeast Brazil with special reference on the role of tilapias. Int Rev Gesamten Hydrobiol 79:77–94

    Article  Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  • Kaliszewicz A, Uchmański J (2009) A cross-phyla response to Daphnia chemical alarm substances by an aquatic oligochaete. Ecol Res 24:461–466

    Article  Google Scholar 

  • Laforsch C, Ngwa W, Grill W, Tollrian R (2004) An acoustic microscopy technique reveals hidden morphological defenses in Daphnia. Proc Natl Acad Sci USA 101:15911–15914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laforsch C, Beccara L, Tollrian R (2006) Inducible defenses: the relevance of chemical alarm cues in Daphnia. Limnol Oceanogr 51:1466–1472

    Article  Google Scholar 

  • Lazzaro X (1987) A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146:97–167

    Article  Google Scholar 

  • Loose CJ, Von Elert E, Dawidowics P (1993) Chemically-induced diel vertical migration in Daphnia—a new bioassay for kairomones exuded by fish. Arch Hydrobiol 126:329–337

    Google Scholar 

  • Machacek J (1993) Comparison of the response of Daphnia galeata and Daphnia obtusa to fish-produced chemical substance. Limnol Oceanogr 38:1544–1550

    Article  CAS  Google Scholar 

  • Maszczyk P, Bartosiewicz M (2012) Threat or treat: the role of fish exudates in the growth and life history of Daphnia. Ecosphere 3:91

    Article  Google Scholar 

  • Menezes RF, Attayde JL, Vasconcelos FR (2010) Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency of a tropical reservoir. Freshw Biol 55:767–779

    Article  CAS  Google Scholar 

  • Meyer JS, Ingersoll CG, McDonald LL, Boyce MS (1986) Estimating uncertainty in population growth rates—Jackknife vs Bootstrap techniques. Ecology 67:1156–1166

    Article  Google Scholar 

  • Ortega JCG, Júlio HF, Gomes LC, Agostinho AA (2015) Fish farming as the main driver of fish introductions in neotropical reservoirs. Hydrobiologia 746:147–158

    Article  Google Scholar 

  • Pestana JLT, Baird DJ, Soares AMVM (2013) Predator threat assessment in Daphnia magna: the role of kairomones versus conspecific alarm cues. Mar Freshw Res 64:679–686

    Article  Google Scholar 

  • Petrusek A, Tollrian R, Schwenk K, Haas A, Laforsch C (2009) A “crown of thorns” is an inducible defense that protects Daphnia against an ancient predator. Proc Natl Acad Sci USA 106:2248–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pijanowska J, Dawidowicz P, Howe A, Weider LJ (2006) Predator-induced shifts in Daphnia life-histories under different food regimes. Arch Hydrobiol 167:37–54

    Article  Google Scholar 

  • Rabus M, Sollradl T, Clausen-Schaumann H, Laforsch C (2013) Uncovering ultrastructural defenses in Daphnia magna—an interdisciplinary approach to assess the predator-induced fortification of the carapace. PLoS One 8:e67856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg MS, Adams DC, Gurevitch J (2000) MetaWin: statistical software for meta-analysis. Version 2.0. Sunderland, Massachussets: Sinauer Associates

  • Sarma SSS, Nandini S, Gulati RD (2005) Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542:315–333

    Article  Google Scholar 

  • Scheiner SM (1993) MANOVA: Multiple response variables and multispecies interactions. In: Gurevitch J, Scheiner SM (eds) Design and analysis of ecological experiments. Chapman and Hall, London, pp 94–112

    Google Scholar 

  • Scheiner SM, Gurevitch J (2001) Design and analysis of ecological experiments, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Schoeppner NM, Relyea RA (2005) Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defenses. Ecol Lett 8:505–512

    Article  PubMed  Google Scholar 

  • Scoville AG, Pfrender ME (2010) Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators. Proc Natl Acad Sci USA 107:4260–4263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaak P, Vanoverbeke J, Boersma M (2000) Predator-induced life-history changes and the coexistence of five taxa in a Daphnia species complex. Oikos 89:164–174

    Article  Google Scholar 

  • StatSoft (2007) STATISTICA (data analysis software system), version 7.0. PhysicsWeb. www.statsoft.com. Accessed 10 June 2014

  • Stemberger RS (1981) A general approach to the culture of planktonic rotifers. Can J Fish Aquat Sci 38:721–724

    Article  Google Scholar 

  • Stibor H (1992) Predator induced life-history shifts in a fresh-water cladoceran. Oecologia 92:162–165

    Article  Google Scholar 

  • Swaffar SM, O’Brien WJ (1996) Spines of Daphnia lumholtzi create handling difficulties for juvenile bluegill sunfish (Lepomis macrochirus). J Plankton Res 18:1055–1061

    Article  Google Scholar 

  • Vitule JRS, Freire CA, Simberloff D (2009) Introduction of non-native freshwater fish can certainly be bad. Fish Fish 10:98–108

    Article  Google Scholar 

  • von Elert E, Pohnert G (2000) Predator specificity of kairomones in diel vertical migration of Daphnia: a chemical approach. Oikos 88:119–128

    Article  Google Scholar 

  • Weber A (2003) More than one ‘fish kairomone’? Perch and stickleback kairomones affect Daphnia life history traits differently. Hydrobiologia 498:143–150

    Article  Google Scholar 

  • Weber A, Van Noordwijk A (2002) Swimming behaviour of Daphnia clones: differentiation through predator infochemicals. J Plankton Res 24:1335–1348

    Article  CAS  Google Scholar 

  • Yin MB, Laforsch C, Lohr JN, Wolinska J (2011) Predator-induced defense makes Daphnia more vulnerable to parasites. Evolution 65:1482–1488

    Article  PubMed  Google Scholar 

  • Zambrano L, Martinez-Meyer E, Menezes N, Peterson AT (2006) Invasive potential of common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloticus) in American freshwater systems. Can J Fish Aquat Sci 63:1903–1910

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff of Fiocruz for assistance during the experiment. We also thank Adriano Caliman (UFRN), who kindly calculated the effect sizes. Financial support for this project was provided by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), No. E-26/110.404/2011, and a fellowship to M. Tolardo was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayme Magalhães Santangelo.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolardo, M., da Silva Ferrão-Filho, A. & Santangelo, J.M. Species and clone-dependent effects of tilapia fish (Cichlidae) on the morphology and life-history of temperate and tropical Daphnia . Ecol Res 31, 333–342 (2016). https://doi.org/10.1007/s11284-016-1337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-016-1337-z

Keywords

Navigation