Skip to main content
Log in

Habitat-specific responses of shoot growth and distribution of alpine dwarf-pine (Pinus pumila) to climate variation

  • Original Article
  • Published:
Ecological Research

Abstract

Alpine dwarf-pine (Pinus pumila) in dominant in the alpine regions of Japan, and often forms the krummholz zone of stunted alpine forest. The distribution of P. pumila is strongly related to the distribution of snow, and shoot growth is also sensitive to weather conditions. Changes in temperature and snowmelt regimes may well affect the distribution patterns of the krummholz zone. P. pumila usually occupies the habitat between the fellfield and snowbed communities, and responses to climate change may differ depending on whether plants are close to the fellfield or the snowbed. We compared the distribution and shoot growth patterns of P. pumila close to both surrounding ecosystems in the Taisetsu Mountains, northern Japan. P. pumila has expanded its distribution area by 14 % toward both edges over the last 32 years. Annual shoot growth was positively affected by summer temperature and sunshine duration, but negatively related to spring temperature toward the fellfield side. Shoot growth was greater at the southeastern edge of patches, where snowdrifts were formed. The results indicated that shoot growth and distribution area increased in warm summers. However, warm springs might have a negative influence on shoot growth, probably because the earlier reduction in cold-resistance enhances the risk of frost damage in spring close to the fellfield side. This study suggests the importance of understanding the site-specific responses of shrubs to predict the impacts of climate change on alpine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bates D, Maechler M, Bolker B, Walker S (2013) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-4. http://CRAN.Rproject.org/package=lme4. Accessed 13 May 2015

  • Billings WD, Bliss LC (1959) An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology 40:388–397. doi:10.2307/1929755

    Article  Google Scholar 

  • Bokhorst S, Bjerke JW, Bowles FW, Melillo J, Callaghan TV, Phoenix GK (2008) Impacts of extreme winter warming in the sub-Arctic: growing season responses of dwarf shrub heathland. Glob Chang Biol 14:2603–2612. doi:10.1111/j.1365-2486.2008.01689.x

    Google Scholar 

  • Bokhorst S, Bjerke JW, Street LE, Callaghan TV, Phoenix GK (2011) Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology, reproduction, growth, and CO2 flux responses. Glob Chang Biol 17:2817–2830. doi:10.1111/j.1365-2486.2011.02424.x

    Article  Google Scholar 

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76:694. doi:10.2307/1939337

    Article  Google Scholar 

  • Choler P (2005) Consistent shifts in alpine plant traits along a mesotopographical gradient. Arct Antarct Alp Res 37:444–453. doi:10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2

  • Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308. doi:10.1890/0012-9658(2001)082[3295:FACOGI]2.0.CO;2

  • Danby RK, Hik DS (2007) Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. J Ecol 95:352–363. doi:10.1111/j.1365-2745.2006.01200.x

    Article  Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G (2003) Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps, Austria. Arct Antarct Alp Res 35:434–441. doi:10.1657/1523-0430(2003)035[0434:POSIIH]2.0.CO;2

  • Essery R, Pomeroy J (2004) Vegetation and topographic control of wind-blown snow distributions in distributed and aggregated simulations for an Arctic tundra basin. J Hydrometeorol 5:735–744. doi:10.1175/1525-7541(2004)005<0735:VATCOW>2.0.CO;2

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448. doi:10.1038/369448a0

    Article  CAS  PubMed  Google Scholar 

  • Hadley JL, Smith WK (1987) Infruence of krummholz mat microclimate on needle physiology and survival. Oecologia 73:82–90. doi:10.1007/BF00376981

    Article  Google Scholar 

  • Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410. doi:10.1111/j.1466-822X.2005.00168.x

    Article  Google Scholar 

  • Horikawa M, Tsuyama I, Matsui T, Kominami Y, Tanaka N (2009) Assessing the potential impacts of climate change on the alpine habitat suitability of Japanese stone pine (Pinus pumila). Landsc Ecol 24:115–128. doi:10.1007/s10980-008-9289-5

    Article  Google Scholar 

  • Hoshino B, Kudo G, Yabuki T, Kaneko M, Ganzorig S (2009) Investigation on the water stress in alpine vegetation using Hyperspectral sensors. Geosci and Remote Sens Sympos, 2009 IEEE Int, IGARSS 2009 3: 554–556. doi:10.1109/IGARSS.2009.5417815

  • Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362. doi:10.1890/06-2128.1

    Article  PubMed  Google Scholar 

  • IPCC (2007) Regional Climate Projections – Polar Regions. In: Fu C, Giorgi F (eds) Climate change 2007: contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 902–909

    Google Scholar 

  • Ishida A, Nakano T, Sekikawa S, Maruta E, Masuzawa T (2001) Diurnal changes in needle gas exchange in alpine Pinus pumila during snow-melting and summer seasons. Ecol Res 16:107–116. doi:10.1046/j.1440-1703.2001.00376.x

    Article  Google Scholar 

  • Japan Association on Remote Sensing (2001) Remote sensing note. Japan Association of Surveyors, Tokyo

    Google Scholar 

  • Japan Meteorological Agency (2012) Climate statistics. http://www.jma.go.jp/jma/indexe.html. Accessed 4 Oct 2012

  • Kajimoto T (1989) Aboveground biomass and litterfall of Pinus pumila scrubs growing on the Kiso mountain range in central Japan. Ecol Res 4:55–69. doi:10.1007/BF02346943

    Article  Google Scholar 

  • Kajimoto T (1990) Photosynthesis and respiration of Pinus pumila needles in relation to needle age and season. Ecol Res 5:333–340. doi:10.1007/BF02347008

    Article  Google Scholar 

  • Kajimoto T (1993) Shoot dynamics of Pinus pumila in relation to altitudinal and wind exposure gradients on the Kiso mountain range, central Japan. Tree Physiol 13:41–53

    Article  PubMed  Google Scholar 

  • Kibe T, Masuzawa T (1992) Seasonal changes in the amount of carbohydrates and photosynthetic activity of Pinus pumila Regal on alpine in central Japan. Proc NIPR Symp Polar Biol 5:118–124

    Google Scholar 

  • Koizumi T (1974) Physiognomy of alpine zone on Mt. Kisokomagatake: vegetation and patterned ground. Jpn J Ecol 24:78–91 (in Japanese)

    Google Scholar 

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Berlin, pp 54–62

    Book  Google Scholar 

  • Kudo G, Hirao AS (2006) Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: implications for global-change impacts. Popul Ecol 48:49–58. doi:10.1007/s10144-005-0242-z

    Article  Google Scholar 

  • Kudo G, Ito K (1992) Plant distribution in relation to the length of the growing season in a snow-bed in the Taisetsu Mountains, northern Japan. Vegetatio 98:165–174. doi:10.1007/BF00045554

    Article  Google Scholar 

  • Kudo G, Kimura M, Kasagi T, Kawai Y, Hirao AS (2010) Habitat-specific responses of alpine plants to climatic amelioration: comparison of fellfield to snowbed communities. Arct Antarct Alp Res 42:438–448. doi:10.1657/1938-4246-42.4.438

    Article  Google Scholar 

  • Kudo G, Amagai Y, Hoshino B, Kaneko M (2011) Invasion of dwarf bamboo into alpine snow-meadows in northern Japan: pattern of expansion and impact on species diversity. Ecol Evol 1:85–96. doi:10.1002/ece3.9

    Article  PubMed Central  PubMed  Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77. doi:10.1046/j.0022-0477.2001.00630.x

    Article  Google Scholar 

  • Maruta E, Nakano T, Ishida A, Iida H, Masuzawa T (1996) Water relations of Pinus pumila in the snow melting season at the alpine region of Mt. Tateyama. Proc NIPR Symp Polar Biol 9:335–342

    Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509. doi:10.1088/1748-9326/6/4/045509

    Article  Google Scholar 

  • Nakamoto A, Ikeda T, Maruta E (2012) Needle browning and death in Pinus pumila in the alpine region of central Japan were not related to mechanical damage of cuticle and cuticle thickness. Can J For Res 42:167–178. doi:10.1139/x11-153

    Article  Google Scholar 

  • Ohwi J, Kitagawa M (1983) New flora of Japan. Shibundo, Tokyo

    Google Scholar 

  • Okitsu S (1985) Consideration on vegetational zonation based on the establishment process of a Pinus pumila zone in Hokkaido, northern Japan. Jpn J Ecol 35:113–121 (in Japanese with English summary)

    Google Scholar 

  • Okitsu S (1988) Geographical variations of annual fluctuations in stem elongation of Pinus pumila Regel on high mountains of Japan. Jpn J Ecol 38:177–183 (in Japanese with English summary)

    Google Scholar 

  • Okitsu S, Ito K (1984) Vegetation dynamics of the Siberian dwarf pine (Pinus pumila Regel) in the Taisetsu mountain range, Hokkaido, Japan. Vegetatio 58:105–113. doi:10.1007/BF00044934

    Article  Google Scholar 

  • Ozeki M, Hamada T, Iijima Y (2011) Shoot elongation of alpine dwarf pine (Pinus pumila) in Senjojiki cirque, central Japan. Bull Nagano Environ Conserv Res Inst 7:39–42 (in Japanese)

    Google Scholar 

  • Pajunen AM, Oksanen J, Virtanen R (2011) Impact of shrub canopies on understorey vegetation in western Eurasian tundra. J Veg Sci 22:837–846. doi:10.1111/j.1654-1103.2011.01285.x

    Article  Google Scholar 

  • Peñuelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30:829–837. doi:10.1111/j.2007.0906-7590.05247.x

    Article  Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/. Accessed 13 May 2015

  • Sakai A, Larcher W (1987) Frost survival of plants—responses and adaptation to freezing stress. Springer, pp 218–224

  • Sano Y, Matano T, Ujihara A (1977) Growth of Pinus pumila and climate fluctuation in Japan. Nature 266:159–161. doi:10.1038/266159a0

    Article  Google Scholar 

  • Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the Arctic. Nature 411:546–547. doi:10.1038/35079180

    Article  CAS  PubMed  Google Scholar 

  • Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE (2005) Winter biological processes could help convert Arctic tundra to shrubland. Bioscience 55:17–26. doi:10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2

  • Takahashi K (2003) Effects of climatic conditions on shoot elongation of alpine dwarf pine (Pinus pumila) at its upper and lower altitudinal limits in central Japan. Arct Antarct Alp Res 35:1–7

    Article  Google Scholar 

  • Takahashi K (2006) Shoot growth chronology of alpine dwarf pine (Pinus pumila) in relation to shoot size and climatic conditions : a reassessment. Polar Biosci 19:123–132

    Google Scholar 

  • Takahashi K, Yoshida S (2009) How the scrub height of dwarf pine Pinus pumila decreases at the treeline. Ecol Res 24:847–854. doi:10.1007/s11284-008-0558-1

    Article  Google Scholar 

  • Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Chang Biol 12:686–702. doi:10.1111/j.1365-2486.2006.01128.x

    Article  Google Scholar 

  • Tatewaki M (1958) Forest ecology of the islands of the North Pacific Ocean. J Fac Agric, Hokkaido University 50:371–486

    Google Scholar 

  • Tranquillini W (1979) Climatic resistance and damage of trees at timberline. In: Tranquillini W (ed) Physiological ecology of the alpine timberline. Springer, Heidelberg, Germany, pp 91–111

    Chapter  Google Scholar 

  • Wada N, Watanuki K, Narita K, Suzuki S, Kudo G, Kume A (2005) Climate change and shoot elongation of alpine dwarf pine (Pinus pumila Regel): comparisons between six Japanese mountains. Phyton 45:253–260

    Google Scholar 

  • Wang T, Zhang QB, Ma K (2006) Treeline dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China. Glob Ecol Biogeogr 15:406–415. doi:10.1111/j.1466-822X.2006.00233.x

    Article  Google Scholar 

  • Wheeler JA, Hoch G, Cortes AJ, Sedlacek J, Wipf S, Rixen C (2014) Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia 175:219–229. doi:10.1007/s00442-013-2872-8

    Article  CAS  PubMed  Google Scholar 

  • Wilson SD, Nilsson C (2009) Arctic alpine vegetation change over 20 years. Glob Chang Biol 15:1676–1684

    Article  Google Scholar 

  • Yasuda M, Okitsu S (2001) The invasion of Pinus pumila and Sasa kurilensis following the drying of moor on Mt. Hiragatake, the mountainous area of Gunma and Niigata Prefectures, Central Japan. Geogra Rev Jpn 74:709–719 (in Japanese with English summary)

    Google Scholar 

  • Yasuda M, Okitsu S (2007) Fluctuation of Pinus pumila tree-ring width and influence of climatic change at Hiragatake moor, central Japan. Jpn J For Environ 49:9–18 (in Japanese with English summary)

    Google Scholar 

  • Yasuda M, Okitsu S (2012) Relationship between shoot elongation and tree-ring growth varies with the positional environment in Pinus pumila. HortResearch 66:49–54

    Google Scholar 

Download references

Acknowledgments

We are grateful to Yoko Nakatani, Asako Kida and Kanji Hashimoto for their kind suggestions during GIS analysis and to Yuta Aoshima for his assistance in field work. This study was supported by a Grant-in-Aid from the Ministry of Environment of Japan from the Global Environmental Research Fund (D-0904) and by JSPS KAKENHI Grant Number 24570015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Amagai.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amagai, Y., Kaneko, M. & Kudo, G. Habitat-specific responses of shoot growth and distribution of alpine dwarf-pine (Pinus pumila) to climate variation. Ecol Res 30, 969–977 (2015). https://doi.org/10.1007/s11284-015-1299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-015-1299-6

Keywords

Navigation