Skip to main content
Log in

Seasonal changes in vertical canopy structure in a temperate broadleaved forest in Korea

  • Original Article
  • Published:
Ecological Research

Abstract

Field measurements of vertical canopy structure have been challenging for decades and still important for understanding forest ecosystems. We measured the vertical canopy structure and its seasonal changes in a temperate deciduous forest canopy in Gwangneung, Korea. Time-series measurements of leaf area index (LAI) were collected in 2013 from a five story (4-m vertical intervals) tower. We evaluated crown depth and species composition by height from a vegetation survey. The vertical distribution of leaf and woody area density was described from measurements taken during the leaf-on and leaf-off seasons, and averaged 0.18 and 0.04 m2 m−3, respectively. Three strata were characterized: (1) the dense upper crowns with large trees (>16-m) of Quercus serrata, in which 29.3 % of the plant materials were distributed; (2) abundant foliage dominated by Carpinus laxiflora at about 16-m (40.8 %); and (3) a diverse and well-developed understory vegetation at about 4-m (15.5 %), consisting of C. laxiflora, Carnipus cordata, and Styrax japonica communities. Per-layer phenology of each species was successfully illustrated by the drastic increase in LAI during the leaf-out season [days of the year (DOY) 110–140], the full-leaved stage LAI of 3.4 ± 0.9 m2 m−2 (mean ±1 standard deviation), and a decrease during the leaf-fall season (DOY 280–320). The seasonal variation in gap fractions reflected different light conditions varying with canopy height. This type of vertical profile archive is valuable not only for comparing the structure of various forests but also for monitoring changes in this ecosystem in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aber JD (1979) A method for estimating foliage-height profiles in broad-leaved forests. J Ecol 67:1979

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, KTP U, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsyn S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434

    Article  Google Scholar 

  • Baldocchi DD, Wilson KB, Gui L (2002) How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest—an assessment with the biophysical model CANOAK. Tree Physiol 22:1065–1077

    Article  CAS  PubMed  Google Scholar 

  • Bater C, Wulder MA, Coops NC, Nelson RF, Hiker T (2011) Stability of sample-based scanning-LiDAR-derived vegetation metrics for forest monitoring. IEEE Trans Geosci Remote Sens 49:2385–2392

    Article  Google Scholar 

  • Bonhomme R, Chartier P (1972) The interpretation and automatic measurement of hemispherical photographs to obtain sunlit foliage area and gap frequency. Isr J Agric Res 22:53–61

    Google Scholar 

  • Campbell GS, Norman JM (1989) The description and measurement of plant canopy structure. In: Russell G, Marchall B, Jarvis PG (eds) Plant canopies: their growth, form and function. Cambridge University Press, Cambridge, pp 1–19

    Chapter  Google Scholar 

  • Chason JW, Baldocchi DD, Huston MA (1991) A comparison of direct and indirect methods for estimating forest canopy leaf area. Agric For Meteorol 57:107–128

    Article  Google Scholar 

  • Chazdon RL, Pearcy RW (1991) The importance of sunflecks for forest understory plants. Bioscience 41:760–766

    Article  Google Scholar 

  • Cho D-S (1992) Disturbance regime and tree regeneration in Kwangnung Natural Forest (in Korean). Korean J Ecol 15:395–410

    Google Scholar 

  • Crockford RH, Richardson DP (2000) Partitioning of rainfall into throughfall, stemfow and interception: effect of forest type, ground cover and climate. Hydrol Process 14:2903–2920

    Article  Google Scholar 

  • Cutini A, Matteucci G, Mugnozza GS (1998) Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests. For Ecol Manage 105:55–65

    Article  Google Scholar 

  • Ellsworth DS, Reich PB (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178

    Article  Google Scholar 

  • Ford ED, Newbould PJ (1971) The leaf canopy of a coppiced deciduous woodland: I. Development and structure. J Ecol 59:843–862

    Article  Google Scholar 

  • Hong J, Kim J, Lee D, Lim J-H (2008) Estimation of the storage and advection effects on H2O and CO2 exchanges in a hilly KoFlux forest catchment. Water Resour Res. doi:10.1029/2007wr006408

    Google Scholar 

  • Hosoi F, Omasa K (2006) Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar. IEEE Trans Geosci Remote Sens 44:3610–3618

    Article  Google Scholar 

  • Hosoi F, Omasa K (2009) Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable lidar imaging. ISPRS J Photogramm Remote Sens 64:151–158. doi:10.1016/j.isprsjprs.2008.09.003

    Article  Google Scholar 

  • Hutchison BA, Matt DR, McMillen RT, Gross LJ, Tajchman SJ, Norman JM (1986) the architecture of a deciduous forest canopy in Eastern Tennessee, USA. J Ecol 74:635–646

    Article  Google Scholar 

  • Ishii HT, Pelt RV, Parker GG, Nadkarni NM (2004) Age-related development of canopy structure and its ecological functions. In: Lowman M, Rinker HB (eds) Forest canopies. Elsevier Academic Press, Massachusetts, pp 102–117

    Chapter  Google Scholar 

  • Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination. Agric For Meteorol 121:19–35. doi:10.1016/j.agrformet.2003.08.027

    Article  Google Scholar 

  • Kang M, Park S, Kwon H, Choi HT, Choi YJ, Kim J (2009) Evapotranspiration from a deciduous forest in a complex terrain and a heterogeneous farmland under monsoon climate. Asia-Pacific J Atmos Sci 45:175–191

    Google Scholar 

  • Kim J, Lee D, Hong J, Kang S, Kim S-J, Moon S-K, Lim J-H, Son Y, Lee J, Kim S, Woo N, Kim K, Lee B, Lee B-L, Kim S (2006) HydroKorea and CarboKorea: cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecol Res 21:881–889. doi:10.1007/s11284-006-0055-3

    Article  Google Scholar 

  • Kira T, Shinozaki K, Hozumi K (1969) Structure of forest canopies as related to their primary productivity. Plant Cell Physiol 10:129–142

    Google Scholar 

  • Kobayashi H, Ryu Y, Baldocchi DD, Welles JM, Norman JM (2013) On the correct estimation of gap fraction: how to remove scattered radiation in gap fraction measurements? Agric For Meteorol 174–175:170–183. doi:10.1016/j.agrformet.2013.02.013

    Article  Google Scholar 

  • Kwon H, Kim J, Hong J, Lim JH (2010) Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea. Biogeosciences 7:1493–1504. doi:10.5194/bg-7-1493-2010

    Article  CAS  Google Scholar 

  • Li-Cor I (2009) LAI-2200 plant canopy analyzer instruction manual. Lincoln, NE, USA

    Google Scholar 

  • Lim JH, Shin JH, Jin GZ, Chun JH, Oh JS (2003) Forest stand structure, site characteristics and carbon budget of the kwangneung natural forest in Korea. Korean J Agric For Meteorol 5:101–109

    Google Scholar 

  • Link TE, Unsworth M, Marks D (2004) The dynamics of rainfall interception by a seasonal temperate rainforest. Agric For Meteorol 124:171–191. doi:10.1016/j.agrformet.2004.01.010

    Article  Google Scholar 

  • Lovell JL, Jupp DLB, Culvenor DS, Coops NC (2003) Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can J Rem Sens 29:607–622

    Article  Google Scholar 

  • Lowman M, Rinker HB (2004) Forest canopies. Elsevier Academic Press, Massachusetts

    Google Scholar 

  • MacArthur RH, Horn HS (1969) Foliage profile by vertical measurements. Ecology 50:802–804

    Article  Google Scholar 

  • Miller PC (1969) Tests of solar radiation models in three forest canopies. Ecology 50:878–885

    Article  Google Scholar 

  • Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52

    Google Scholar 

  • Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production, 1953. Ann Bot 95:549–567. doi:10.1093/aob/mci052

    Article  PubMed Central  PubMed  Google Scholar 

  • Muul I, Liat LB (1970) vertical zonation in a tropical rain forest in Malaysia: method of study. Science 169:788–789

    Article  CAS  PubMed  Google Scholar 

  • Neumann HH, Den Hartog G (1989) Leaf area measurements based on hemispheric photographs and leaf-litter collection in a deciduous forest during autumn leaf-fall. Agric For Meteorol 45:325–345

    Article  Google Scholar 

  • Norman JM, Campbell GS (1989) Canopy structure. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology. Chapman & Hall, London, pp 301–325

    Chapter  Google Scholar 

  • Norman JM, Jarvis PG (1975) Photosynthesis in sitka spruce [Picea sitchensis (Bong.) Carr.]: V. Radiation penetration theoryand a test case. J Appl Ecol 12:839–878

    Article  Google Scholar 

  • Ogawa H, Yoda K, Kira T, Ogino K, Shidei T, Ratanawongse D, Apasutaya C (1961) Comparative ecological studies on three main types of forest vegetation in Thailand. I. Structure and floristic composition. In: Kira T, Iwata K (eds) Nature and life in Southeast Asia. Fauna and Flora Research Society, Kyoto, pp 13–48

    Google Scholar 

  • Parker GG (1995) Structure and microclimate of forest canopies. In: Lowman M, Nadkarni N (eds) forest canopies. Academic Press, San Diego, pp 73–106

    Google Scholar 

  • Parker GG, Brown MJ (2000) Forest canopy stratification—is it useful? Am Nat 155:473–484

    Article  PubMed  Google Scholar 

  • Parker GG, O’Neill JP, Higman D (1989) Vertical profile and canopy organization in a mixed deciduous forest. Vegetatio 85:1–11

    Article  Google Scholar 

  • Parker GG, Smith AP, Hogan KP (1992) Access to the upper forest canopy with a large tower crane. Bioscience 42:664–670

    Article  Google Scholar 

  • Pereira AR, Shaw RH (1980) A numerical experiment on the mean wind structure inside canopies of vegetation. Agric Meteorol 22:303–318

    Article  Google Scholar 

  • Perry DR (1978) A method of access into the crowns of emergent and canopy trees. Biotropica 10:155–157

    Article  Google Scholar 

  • Perry DR, Williams J (1981) The tropical rain forest canopy: a method providing total access. Biotropica 13:283–285

    Article  Google Scholar 

  • Queck R, Bernhofer C (2010) Constructing wind profiles in forests from limited measurements of wind and vegetation structure. Agric For Meteorol 150:724–735. doi:10.1016/j.agrformet.2010.01.012

    Article  Google Scholar 

  • Radtke PJ, Bolstad PV (2001) Laser point-quadrat sampling for estimating foliage-height profiles in broad-leaved forests. Can J For Res 31:410–418. doi:10.1139/cjfr-31-3-410

    Article  Google Scholar 

  • Ross J (1981) The radiation regime and architecture of plant stands. Junk Publishers, The Hague

    Book  Google Scholar 

  • Ryu Y, Kang S, Moon S-K, Kim J (2008) Evaluation of land surface radiation balance derived from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and heterogeneous landscape on clear sky days. Agric For Meteorol 148:1538–1552. doi:10.1016/j.agrformet.2008.05.008

    Article  Google Scholar 

  • Ryu Y, Baldocchi DD, Verfaillie J, Ma S, Falk M, Ruiz-Mercado I, Hehn T, Sonnentag O (2010a) Testing the performance of a novel spectral reflectance sensor, built with light emitting diodes (LEDs), to monitor ecosystem metabolism, structure and function. Agric For Meteorol 150:1597–1606. doi:10.1016/j.agrformet.2010.08.009

    Article  Google Scholar 

  • Ryu Y, Nilson T, Kobayashi H, Sonnentag O, Law BE, Baldocchi DD (2010b) On the correct estimation of effective leaf area index: does it reveal information on clumping effects? Agric For Meteorol 150:463–472. doi:10.1016/j.agrformet.2010.01.009

    Article  Google Scholar 

  • Ryu Y, Sonnentag O, Nilson T, Vargas R, Kobayashi H, Wenk R, Baldocchi DD (2010c) How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach. Agric For Meteorol 150:63–76. doi:10.1016/j.agrformet.2009.08.007

    Article  Google Scholar 

  • Ryu Y, Lee G, Jeon S, Song Y, Kimm H (2014) Monitoring multi-layer canopy spring phenology of temperate deciduous and evergreen forests using low-cost spectral sensors. Remote Sens Environ 149:227–238. doi:10.1016/j.rse.2014.04.015

    Article  Google Scholar 

  • Satoo T (1970) Primary production in a plantation of Japanese Larch, Larix leptolepis: a summarized report of JPTF-66 KOIWAI. J Jpn For Soc 52:154–158

    Google Scholar 

  • Shaw RH, Pereira AR (1982) Aerodynamic roughness of a plant canopy: a numerical experiment. Agric Meteorol 26:51–65

    Article  Google Scholar 

  • Song Y, Maki M, Imanishi J, Morimoto Y (2011) Voxel-based estimation of plant area density from airborne laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII-5/W12:209–212. doi:10.5194/isprsarchives-XXXVIII-5-W12-209-2011

    Article  Google Scholar 

  • Song Y, Ryu Y, Jeon S (2014) Interannual variability of regional evapotranspiration under precipitation extremes: a case study of the Youngsan River basin in Korea. J Hydrol 519:3531–3540. doi:10.1016/j.jhydrol.2014.10.048

    Article  Google Scholar 

  • Sterck F, Pvd Meer, Bongers F (1992) herbivory in two rain forest canopies in French Guyana. Biotropica 24:97–99

    Article  Google Scholar 

  • Tadaki Y (1966) Some discussion on the leaf biomass of forest stands and trees. Bull Gov For Exp Stn Tokyo 184:135–162

    Google Scholar 

  • Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf area index (LAI) determination. Agric For Meteorol 121:37–53. doi:10.1016/j.agrformet.2003.08.001

    Article  Google Scholar 

  • Welles JM, Norman JM (1991) instrument for indirect measurement of canopy architecture. Agron J 83:818–825

    Article  Google Scholar 

  • Wilson JW (1960) Inclined point quadrats. New Phytol 59:1–8

    Article  Google Scholar 

  • Wilson JW (1965) Point quadrat analysis of foliage distribution for plants growing singly or in rows. Aust J Bot 13:405–409

    Article  Google Scholar 

  • Yamakura T, Hagihara A, Sukardjo S, Ogawa H (1986) tree size in a mature dipterocarp forest stand in Sebulu, East Kalimantan, Indonesia. Southeast Asian Stud 23:452–478

    Google Scholar 

  • Zhang Y, Chen JM, Miller JR (2005) Determining digital hemispherical photograph exposure for leaf area index estimation. Agric For Meteorol 133:166–181. doi:10.1016/j.agrformet.2005.09.009

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Korea Meteorological Administration Research and Development Program under the Grant Weather Information Service Engine (WISE) project (KMA-2012-0001-A). The authors were supported by BK21 Plus Project in 2014 (Seoul National University Interdisciplinary Program in Landscape Architecture, Global Leadership Program Towards Innovative Green Infrastructure). English editing was supported by the Research Institute for Agriculture and Life Sciences, Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngryel Ryu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Ryu, Y. Seasonal changes in vertical canopy structure in a temperate broadleaved forest in Korea. Ecol Res 30, 821–831 (2015). https://doi.org/10.1007/s11284-015-1281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-015-1281-3

Keywords

Navigation