Skip to main content

Advertisement

Log in

Deep learning for preliminary profiling of panoramic images

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objective

This study explored the feasibility of using deep learning for profiling of panoramic radiographs.

Study design

Panoramic radiographs of 1000 patients were used. Patients were categorized using seven dental or physical characteristics: age, gender, mixed or permanent dentition, number of presenting teeth, impacted wisdom tooth status, implant status, and prosthetic treatment status. A Neural Network Console (Sony Network Communications Inc., Tokyo, Japan) deep learning system and the VGG-Net deep convolutional neural network were used for classification.

Results

Dentition and prosthetic treatment status exhibited classification accuracies of 93.5% and 90.5%, respectively. Tooth number and implant status both exhibited 89.5% classification accuracy; impacted wisdom tooth status exhibited 69.0% classification accuracy. Age and gender exhibited classification accuracies of 56.0% and 75.5%, respectively.

Conclusion

Our proposed preliminary profiling method may be useful for preliminary interpretation of panoramic images and preprocessing before the application of additional artificial intelligence techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

References

  1. Fujita H. AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol Phys Technol. 2020;13:6–19.

    Article  PubMed  Google Scholar 

  2. Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol. 2020;49:20190107.

    Article  PubMed  Google Scholar 

  3. Tuzoff DV, Tuzova LN, Bornstein MM, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol. 2019;48:20180051.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kılıc MC, Bayrakdar IS, Çelik Ö, et al. Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs. Dentomaxillofac Radiol. 2021;50:20200172.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bilgir E, Bayrakdar İŞ, Çelik Ö, et al. An artificial intelligence approach to automatic tooth detection and numbering in panoramic radiographs. BMC Med Imaging. 2021;21:124.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Muramatsu C, Morishita T, Takahashi R, et al. Tooth detection and classification on panoramic radiographs for automatic dental chart filing: improved classification by multi-sized input data. Oral Radiol. 2021;37:13–9.

    Article  PubMed  Google Scholar 

  7. Chen H, Zhang K, Lyu P, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019;9:3840.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mori M, Ariji Y, Fukuda M, et al. Performance of deep learning technology for evaluation of positioning quality in periapical radiography of the maxillary canine. Oral Radiol. 2021. https://doi.org/10.1007/s11282-021-00538-2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miki Y, Muramatsu C, Hayashi T, et al. Classification of teeth in cone-beam CT using deep convolutional neural network. Comput Biol Med. 2017;80:24–9.

    Article  PubMed  Google Scholar 

  10. DetectNet: Deep Neural Network for Object Detection in DIGITS. https://devblogs.nvidia.com/detectnet-deep-neural-network-object-detection-digits/. Accessed 26 Apr 2022

  11. Szegedy C, Liu W, Jai Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. IEEE Conf Comput Vis Pat Recog CVPR. 2015. https://doi.org/10.48550/arXiv.1409.4842.

    Article  Google Scholar 

  12. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. pp. 770–8. https://doi.org/10.1109/CVPR.2016.90.

  13. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ICLR. 2015. https://doi.org/10.48550/arXiv.1409.1556.

    Article  Google Scholar 

  14. Katsumata A, Fujita H. Progress of computer-aided detection/diagnosis (CAD) in dentistry. Jpn Dent Sci Rev. 2014;50:63–8.

    Article  Google Scholar 

  15. Ariji Y, Yanashita Y, Kutsuna S, et al. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128:424–30.

    Article  PubMed  Google Scholar 

  16. Watanabe H, Ariji Y, Fukuda M, et al. Deep learning object detection of maxillary cyst-like lesions on panoramic radiographs: preliminary study. Oral Radiol. 2021;37:487–93.

    Article  PubMed  Google Scholar 

  17. Kuwada C, Ariji Y, Fukuda M, et al. Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;130:464–9.

    Article  PubMed  Google Scholar 

  18. Orhan K, Bilgir E, Bayrakdar IS, Ezhov M, Gusarev M, Shumilov E. Evaluation of artificial intelligence for detecting impacted third molars on cone-beam computed tomography scans. J Stomatol Oral Maxillofac Surg. 2020. https://doi.org/10.1016/j.jormas.2020.12.006.

    Article  PubMed  Google Scholar 

  19. Fukuda M, Inamoto K, Shibata N, et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020;36:337–43.

    Article  PubMed  Google Scholar 

  20. Mori M, Ariji Y, Katsumata A, et al. A deep transfer learning approach for the detection and diagnosis of maxillary sinusitis on panoramic radiographs. Odontology. 2021;109:941–8.

    Article  PubMed  Google Scholar 

  21. Kuwana R, Ariji Y, Fukuda M, et al. Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs. Dentomaxillofac Radiol. 2021;50:20200171.

    PubMed  Google Scholar 

  22. Alalharith DM, Alharthi HM, Alghamdi WM, Alsenbel YM, Aslam N, Khan IU, Shahin SY, Dianišková S, Alhareky MS, Barouch KK. A Deep learning-based approach for the detection of early signs of gingivitis in orthodontic patients using faster region-based convolutional neural networks. Int J Environ Res Public Health. 2020;17(22):8447.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hiraiwa T, Ariji Y, Fukuda M, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac Radiol. 2019;48:20180218.

    Article  PubMed  Google Scholar 

  24. Fukuda M, Ariji Y, Kise Y, et al. Comparison of 3 deep learning neural networks for classifying the relationship between the mandibular third molar and the mandibular canal on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;130:336–43.

    Article  PubMed  Google Scholar 

  25. Aoyama Y, Maruko I, Kawano T, et al. Diagnosis of central serous chorioretinopathy by deep learning analysis of en face images of choroidal vasculature: a pilot study. PLoS ONE. 2021;16: e0244469.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ortiz AG, Soares GH, da Rosa GC, Biazevic MGH, Michel-Crosato E. A pilot study of an automated personal identification process: applying machine learning to panoramic radiographs. Imaging Sci Dent. 2021;51:187–93.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ryan Chastain-Gross, Ph.D., from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This work was supported by JSPS KAKENHI Grant Number JP19K10347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyomi Kohinata.

Ethics declarations

Conflict of interest

None to declare.

Ethical approval

Asahi University School of Dentistry ethics committee (approval no. 31040).

Informed consent

Informed consent was obtained from the patient for publication of accompanying images.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohinata, K., Kitano, T., Nishiyama, W. et al. Deep learning for preliminary profiling of panoramic images. Oral Radiol 39, 275–281 (2023). https://doi.org/10.1007/s11282-022-00634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-022-00634-x

Keywords

Navigation