Skip to main content
Log in

Efficient trajectory compression and range query processing

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Nowadays, there are ubiquitousness of GPS sensors in various devices collecting, transmitting and storing tremendous trajectory data. However, such an unprecedented scale of GPS data has put great pressure on transmitting it on the internet and posed an urgent demand for not only an effective storage mechanism but also an efficient query mechanism. Line simplification in online mode, searving as a mainstream trajectory compression method, plays an important role to attack this issue. But for the existing algorithms, either their time cost is extremely high, or the accuracy loss after the compression is completely unacceptable. To attack this issue, we propose \(\epsilon\)_Region based Online trajectory Compression with Error bounded (ROCE for short), which makes the best balance among the accuracy loss, the time cost and the compression rate. The range query serves as a primitive, yet quite essential operation on analyzing trajectories. Each trajectory is usually seen as a sequence of discrete points, and in most previous work, a trajectory is judged to be overlapped with the query region R iff there is at least one point in this trajectory falling in R. But this traditional criteria is not suitable when the queried trajectories are compressed, because there may be hundreds of points discarded between each two adjacent points and the points in each compressed trajectory are quite sparse. And many trajectories could be missing in the result set. To address this, in this paper, a new criteria based on the probability and an efficient Range Query processing algorithm on Compressed trajectories RQC are proposed. In addition, an efficient index ASP_tree and lots of novel techniques are also presented to accelerate the processing of trajectory compression and range queries obviously. Extensive experiments have been done on multiple real datasets, and the results demonstrate superior performance of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Notes

  1. https://tech.sina.com.cn/roll/2020-08-26/doc-iivhvpwy3125825.shtml

  2. http://dx.doi.org/10.5441/001/1.78152p3q

  3. https://irc.atr.jp/crest2010_HRI/ATC_dataset/

  4. https://wiki.openstreetmap.org/wiki/Planet.gpx

  5. https://arxiv.org/abs/2007.04503 and http://export.arxiv.org/abs/2007.04503

References

  1. Ali, M.E., Eusuf, S.S., Abdullah, K., Choudhury, F.M., Culpepper, J.S., Sellis, T.: The maximum trajectory coverage query in spatial databases. Proceedings of the VLDB Endowment 12(3) (2019)

  2. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB Endowment, pp. 853–864 (2005)

  3. Brščić, D., Kanda, T., Ikeda, T., Miyashita, T.: Person tracking in large public spaces using 3-d range sensors. IEEE Transactions on Human-Machine Systems 43(6), 522–534 (2013)

    Article  Google Scholar 

  4. Cao, H., Wolfson, O.: (2005) Nonmaterialized motion information in transport networks. In: International Conference on Database Theory, pp. 173–188. Springer

  5. Cao, W., Li, Y.: Dots: An online and near-optimal trajectory simplification algorithm. Journal of Systems and Software 126, 34–44 (2017)

    Article  Google Scholar 

  6. Chen, M., Xu, M., Franti, P.: A fast \(o(n)\) multiresolution polygonal approximation algorithm for gps trajectory simplification. IEEE Transactions on Image Processing 21(5), 2770–2785 (2012)

    Article  MathSciNet  Google Scholar 

  7. Cheng, L., Wong, R.C.W., Jagadish, H.: Direction-preserving trajectory simplification. Proceedings of the VLDB Endowment 6(10), 949–960 (2013)

    Article  Google Scholar 

  8. Dai, J., Yang, B., Guo, C., Ding, Z.: (2015) Personalized route recommendation using big trajectory data. In: 2015 IEEE 31st International Conference on Data Engineering, pp. 543–554. IEEE

  9. Dai, J., Yang, B., Guo, C., Jensen, C.S., Hu, J.: Path cost distribution estimation using trajectory data. Proceedings of the VLDB Endowment 10(3), 85–96 (2016)

    Article  Google Scholar 

  10. Dong, K., Zhang, B., Shen, Y., Zhu, Y., Yu, J.: Gat: A unified gpu-accelerated framework for processing batch trajectory queries. IEEE Transactions on Knowledge and Data Engineering 32(1), 92–107 (2018)

    Article  Google Scholar 

  11. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization 10(2), 112–122 (1973)

    Article  Google Scholar 

  12. Duan, L., Pang, T., Nummenmaa, J., Zuo, J., Zhang, P., Tang, C.: Bus-olap: A data management model for non-on-time events query over bus journey data. Data Science and Engineering 3(1), 52–67 (2018)

    Article  Google Scholar 

  13. Fang, Z., Gao, Y., Pan, L., Chen, L., Miao, X., Jensen, C.S.: Coming: A real-time co-movement mining system for streaming trajectories. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 2777–2780 (2020)

  14. Flack, A., Fiedler, W., Blas, J., Pokrovski, I., Mitropolsky, B., Kaatz, M., Aghababyan, K., Khachatryan, A., Fakriadis, I., Makrigianni, E., Jerzak, L., Shamin, M., Shamina, C., Azafzaf, H., Feltrup-Azafzaf, C., Mokotjomela, T., Wikelski, M.: Data from: Costs of migratory decisions: a comparison across eight white stork populations (2015)

  15. Hershberger, J.E., Snoeyink, J.: Speeding up the Douglas-Peucker line-simplification algorithm. University of British Columbia, Department of Computer Science Vancouver, BC (1992)

  16. Hu, G., Shao, J., Liu, F., Wang, Y., Shen, H.T.: If-matching: towards accurate map-matching with information fusion. IEEE Transactions on Knowledge and Data Engineering 29(1), 114–127 (2017)

    Article  Google Scholar 

  17. Jin, F., Hua, W., Xu, J., Zhou, X.: Moving object linking based on historical trace. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1058–1069. IEEE (2019)

  18. Ke, B., Shao, J., Zhang, Y., Zhang, D., Yang, Y.: An online approach for direction-based trajectory compression with error bound guarantee. In: Asia-Pacific Web Conference, pp. 79–91. Springer (2016)

  19. Ke, B., Shao, J., Zhang, D.: An efficient online approach for direction-preserving trajectory simplification with interval bounds. In: 18th IEEE MDM, pp. 50–55 (2017)

  20. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In: Proceedings ICDM, pp. 289–296 (2001)

  21. Li, G., Hung, C., Liu, M., Pan, L., Peng, W., Chan, S.G.: Spatial-temporal similarity for trajectories with location noise and sporadic sampling. In: 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pp. 1224–1235. IEEE (2021)

  22. Lin, X., Ma, S., Zhang, H., Wo, T., Huai, J.: One-pass error bounded trajectory simplification. Proc VLDB Endow 10(7), 841–852 (2017)

    Article  Google Scholar 

  23. Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Jurdak, R.: Bounded quadrant system: Error-bounded trajectory compression on the go. In: IEEE 31st ICDE, pp. 987–998 (2015)

  24. Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Lee, J.G., Jurdak, R.: A novel framework for online amnesic trajectory compression in resource-constrained environments. IEEE Transactions on Knowledge and Data Engineering 28(11), 2827–2841 (2016)

    Article  Google Scholar 

  25. Liu, Y., Zhao, K., Cong, G., Bao, Z.: Online anomalous trajectory detection with deep generative sequence modeling. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 949–960. IEEE (2020)

  26. Long, C., Wong, C.W., Jagadish, H.V.: Trajectory simplification: On minimizing the directionbased error. Proceedings of the VLDB Endowment 8(1), 49–60 (2014)

    Article  Google Scholar 

  27. Meratnia, N., Rolf, A.: Spatiotemporal compression techniques for moving point objects. In: International Conference on Extending Database Technology, pp. 765–782. Springer (2004)

  28. Muckell, J., Hwang, J.H., Patil, V., Lawson, C.T., Ping, F., Ravi, S.: Squish: an online approach for gps trajectory compression. In: Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications, pp. 1–8 (2011)

  29. Muckell, J., Olsen, P.W., Hwang, J.H., Lawson, C.T., Ravi, S.: Compression of trajectory data: a comprehensive evaluation and new approach. GeoInformatica 18(3), 435–460 (2014)

    Article  Google Scholar 

  30. Potamias, M., Patroumpas, K., Sellis, T.: Sampling trajectory streams with spatiotemporal criteria. In: 18th International Conference on Scientific and Statistical Database Management (SSDBM’06), pp. 275–284. IEEE (2006)

  31. Richter, K., Schmid, F., Laube, P.: Semantic trajectory compression: Representing urban movement in a nutshell. J Spatial Inf Sci 4(1), 3–30 (2012)

    Google Scholar 

  32. Schoemans, M., Sakr, M.A., Zimányi, E.: Implementing rigid temporal geometries in moving object databases. In: 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pp. 2547–2558. IEEE (2021)

  33. Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. Proceedings of the VLDB Endowment 10(11) (2017)

  34. Shang, Z., Li, G., Bao, Z.: Dita: Distributed in-memory trajectory analytics. In: Proceedings of the 2018 International Conference on Management of Data, pp. 725–740 (2018)

  35. Shao, K., Wang, Y., Zhou, Z., Xie, X., Wang, G.: Trajforesee: How limited detailed trajectories enhance large-scale sparse information to predict vehicle trajectories? In: 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pp. 2189–2194. IEEE (2021)

  36. Song, R., Sun, W., Zheng, B., Zheng, Y.: Press: A novel framework of trajectory compression in road networks. Proceedings of the VLDB Endowment 7(9), 661–672 (2014)

    Article  Google Scholar 

  37. Ulm, G., Smith, S., Nilsson, A., Gustavsson, E., Jirstrand, M.: OODIDA: on-board/off-board distributed real-time data analytics for connected vehicles. Data Sci Eng 6(1), 102–117 (2021)

    Article  Google Scholar 

  38. Wu, H., Xue, M., Cao, J., Karras, P., Ng, W.S., Koo, K.K.: Fuzzy trajectory linking. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 859–870. IEEE (2016)

  39. Xu, J., Bao, Z., Lu, H.: Continuous range queries over multi-attribute trajectories. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1610–1613. IEEE (2019)

  40. Yang, P., Wang, H., Zhang, Y., Qin, L., Zhang, W., Lin, X.: T3S: effective representation learning for trajectory similarity computation. In: 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pp. 2183–2188. IEEE (2021)

  41. Yang, X., Wang, B., Yang, K., Liu, C., Zheng, B.: A novel representation and compression for queries on trajectories in road networks. IEEE Trans Knowl Data Eng 30(4), 613–629 (2018)

    Article  Google Scholar 

  42. Yuan, H., Li, G.: (2019) Distributed in-memory trajectory similarity search and join on road network. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1262–1273. IEEE

  43. Yuan, H., Li, G.: A survey of traffic prediction: from spatio-temporal data to intelligent transportation. Data Sci Eng 6(1), 63–85 (2021)

    Article  Google Scholar 

  44. Yuan, H., Li, G., Bao, Z., Feng, L.: (2021) An effective joint prediction model for travel demands and traffic flows. In: 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pp. 348–359. IEEE

  45. Zhang, B., Shen, Y., Zhu, Y., Yu, J.: A gpu-accelerated framework for processing trajectory queries. In: IEEE 34th ICDE, pp. 1037–1048 (2018a)

  46. Zhang, D., Yang, D., Wang, Y., Tan, K.L., Cao, J., Shen, H.T.: Distributed shortest path query processing on dynamic road networks. The VLDB Journal-The International Journal on Very Large Data Bases 26(3), 399–419 (2017)

    Article  Google Scholar 

  47. Zhang, D., Ding, M., Yang, D., Liu, Y., Fan, J., Shen, H.T.: Trajectory simplification: an experimental study and quality analysis. Proceedings of the VLDB Endowment 11(9), 934–946 (2018)

    Article  Google Scholar 

  48. Zhao, Y., Shang, S., Wang, Y., Zheng, B., Nguyen, Q.V.H., Zheng, K.: REST: A reference-based framework for spatio-temporal trajectory compression. In: Guo, Y., Farooq, F. (eds) Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, pp. 2797–2806 (2018)

  49. Zheng, B., Weng, L., Zhao, X., Zeng, K., Zhou, X., Jensen, C.S.: REPOSE: distributed top-k trajectory similarity search with local reference point tries. In: 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pp. 708–719. IEEE (2021a)

  50. Zheng, G., Liu, C., Wei, H., Chen, C., Li, Z.: Rebuilding city-wide traffic origin destination from road speed data. In: 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pp. 301–312. IEEE (2021b)

  51. Zheng, K., Zhao, Y., Lian, D., Zheng, B., Liu, G., Zhou, X.: Reference-based framework for spatio-temporal trajectory compression and query processing. IEEE Trans Knowl Data Eng 32(11), 2227–2240 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Gao.

Ethics declarations

Conflicts of interest

The authors declare that they have no confict of interest.

Additional information

This work was supported in part by the National Natural Science Foundation of China under grants No.U19A2059, No.61632010, No.61732003, No.61832003, No.U1811461 and No.62102119 and Key Research and Development Projects of the Ministry of Science and Technology under grant No.2019YFB2101902.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Gao, H., Wang, B. et al. Efficient trajectory compression and range query processing. World Wide Web 25, 1259–1285 (2022). https://doi.org/10.1007/s11280-022-01038-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-022-01038-x

Keywords

Navigation