Skip to main content
Log in

Isolation Enhanced Compact Dual-Mode 4-Port MIMO Design Using Slot-Based Switchable DGS Decoupling Filters

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A compact MIMO antenna with enhanced isolation and the ability to switch the frequency bands is an attractive candidate for the current multifunctional high-speed portable wireless devices. To achieve this objective, a simple and novel compact dual-mode 4-port MIMO configuration for WiMAX and WLAN standards has been introduced in this work. The compactness of the MIMO geometry (34 mm × 34 mm) is due to compact switchable curve-shaped monopoles arranged closely over a loop-shaped continuous ground plane. The ground plane is defected by etching open-ended slots to suppress the surface current flow between the elements. As antenna elements switch between mode-1 (WiMAX band) and mode-2 (WLAN band), the DGS slots are also switchable to enhance isolation across both bands. The switchable DGS slots function as bandstop filters and thus isolate the elements by 40 and 41 dB in the accomplished frequency bands. The intented MIMO antenna reports a − 10 dB return loss bandwidths of 400 MHz (3.3–3.7 GHz) and 1100 MHz (4.75–5.85 GHz) in mode-1 and mode-2, respectively. The diversity metrics of envelope correlation coefficient < 0.002, diversity gain ≈ 10 dB, total active reflection coefficient < − 10 dB, and channel capacity loss < 0.4 b/s/Hz, ensure excellent diversity/MIMO performance. The optimized 4-port MIMO configuration is fabricated, and measured results are compared with the simulated ones to validate the introduced technique. The MIMO antenna's compact form factor and excellent antenna/diversity characteristics confirm its potentiality for use in portable multifunctional wireless devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

References

  1. Jensen, M. A., & Wallace, J. W. (2004). A review of antennas and propagation for MIMO wireless communications. IEEE Transactions on Antennas and Propagation, 52(11), 2810–2824. https://doi.org/10.1109/TAP.2004.835272

    Article  Google Scholar 

  2. Bejarano, O., & Knightly, E. W. (2013). IEEE 802.11ac: From channelization to multi-user MIMO. IEEE Communications Magazine, 51(10), 84–90. https://doi.org/10.1109/MCOM.2013.6619570

    Article  Google Scholar 

  3. Chung, K. L., Chen, L., Lai, G., Zheng, K., & Wang, Z. (2023). Three-element circularly polarized MIMO antenna with self-decoupled probing method for B5G-V2X communications. Alexandria Engineering Journal, 70, 553–567. https://doi.org/10.1016/j.aej.2023.02.044

    Article  Google Scholar 

  4. Upadhyaya, T., Sorathiya, V., Al Shathri, S., El Shafai, W., Patel, U., Pandya, K. V., & Armghan, A. (2023). Quad—Port MIMO antenna with high isolation characteristics for sub 6-GHz 5G NR communication. Scientific Reports. https://doi.org/10.1038/s41598-023-46413-4

    Article  Google Scholar 

  5. Sujanth Narayan, K. G., Baskaradas, J. A., & Rajesh Kumar, D. (2021). Design of a CPW-fed compact MIMO antenna for next generation vehicle to everything (V2X) communication. Wireless Personal Communications, 120(3), 2179–2200.

    Article  Google Scholar 

  6. Wu, T., Wang, M. J., & Chen, J. (2022). Decoupling of MIMO antenna array based on half-mode substrate integrated waveguide with neutralization lines. AEU—International Journal of Electronics and Communications, 157, 154416. https://doi.org/10.1016/j.aeue.2022.154416

    Article  Google Scholar 

  7. Cao, X., Xia, Y., Wu, L., & Wu, X. (2022). Tri-band MIMO antenna design based on characteristic modes manipulation. AEU—International Journal of Electronics and Communications, 155(July), 154318. https://doi.org/10.1016/j.aeue.2022.154318

    Article  Google Scholar 

  8. Saha, P. B., Ghoshal, D., Dash, R. K., & Roy, S. (2022). Neutralizing line based triple-band MIMO antenna with polarization diversity for WLAN/C/X band usage. International Journal of Electronics. https://doi.org/10.1080/00207217.2021.2025453

    Article  Google Scholar 

  9. Kumar, A., De, A., & Jain, R. K. (2023). Novel H-shaped EBG in E-plane for isolation enhancement of compact CPW-fed two-port UWB MIMO antenna. IETE Journal of Research, 69(9), 5986–5992. https://doi.org/10.1080/03772063.2021.1986147

    Article  Google Scholar 

  10. Tan, X., Wang, W., Wu, Y., Liu, Y., & Kishk, A. A. (2019). Enhancing isolation in dual-band meander-line multiple antenna by employing split EBG structure. IEEE Transactions on Antennas and Propagation, 67(2), 2769–2774. https://doi.org/10.1109/TAP.2019.2897489

    Article  Google Scholar 

  11. Karthigaiveni, S., Reddy, M. A., & Pandeeswari, R. (2023). Aperture coupled four element MIMO antenna loaded with NBSRR superstrates for 5G wireless communications. Wireless Personal Communications. https://doi.org/10.1007/s11277-023-10359-7

    Article  Google Scholar 

  12. Khan, D., Ahmad, A., & Choi, D. Y. (2024). Dual-band 5G MIMO antenna with enhanced coupling reduction using metamaterials. Scientific Reports, 14(1), 1–16. https://doi.org/10.1038/s41598-023-50446-0

    Article  Google Scholar 

  13. Kethavathu, S. N., Singam, A., & Muthusamy, P. (2021). Compact symmetrical slot coupled linearly polarized two/four/eight element MIMO bowtie DRA for WLAN applications. AEU—International Journal of Electronics and Communications, 135(October 2020), 153729. https://doi.org/10.1016/j.aeue.2021.153729

    Article  Google Scholar 

  14. Xi, S., Cai, J., Shen, L., Li, Q., & Liu, G. (2023). Dual-band MIMO antenna with enhanced isolation for 5G NR application. Micromachines. https://doi.org/10.3390/mi14010095

    Article  Google Scholar 

  15. Tran, H. H., & Nguyen-Trong, N. (2021). Performance enhancement of MIMO patch antenna using parasitic elements. IEEE Access, 9, 30011–30016. https://doi.org/10.1109/ACCESS.2021.3058340

    Article  Google Scholar 

  16. Ayinala, K. D., & Sahu, P. K. (2021). Isolation enhanced compact dual-band quad-element MIMO antenna with simple parasitic decoupling elements. AEUE—International Journal of Electronics and Communications, 142, 154013. https://doi.org/10.1016/j.aeue.2021.154013

    Article  Google Scholar 

  17. Tan, X., Wang, W., Wu, Y., Liu, Y., Kishk, A. A., & Wang, H. (2020). Enhancing isolation and bandwidth in planar monopole multiple antennas using thin inductive line resonator. AEU—International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2020.153094

    Article  Google Scholar 

  18. Ameen, M., Chaudhary, R. K., & Member, S. (2023). Isolation enhancement of metamaterial-inspired two-port MIMO antenna using hybrid techniques. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(6), 1966–1970. https://doi.org/10.1109/TCSII.2023.3237831

    Article  Google Scholar 

  19. Jha, P., Kumar, A., & De, A. (2023). Two-port miniaturized textile antenna for 5G and WLAN applications. International Journal of Microwave and Wireless Technologies, 15(8), 1443–1452.

    Article  Google Scholar 

  20. Kumar, A., De, A., & Jain, R. K. (2023). Two-port antenna based on shorting pins and open-ended slots with T-shaped stub for isolation enhancement. IETE Journal of Research. https://doi.org/10.1080/03772063.2023.2208554

    Article  Google Scholar 

  21. Wang, W., Wu, Y., Member, S., Wang, W., & Yang, Y. (2021). Isolation enhancement in dual-band monopole antenna for 5G applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(6), 1867–1871. https://doi.org/10.1109/TCSII.2020.3040164

    Article  Google Scholar 

  22. Sharawi, M. S. (2017). Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [Wireless corner]. IEEE Antennas and Propagation Magazine, 59(2), 162–170. https://doi.org/10.1109/MAP.2017.2658346

    Article  Google Scholar 

  23. Gupta, P., Bharti, M., & Kumar, A. (2022). Compact CPW fed four port MIMO antenna for UWB applications with Wi-Fi/ISM/WLAN Band Notch characteristics. Journal of Engineering Research, ICMET Special Issue. https://doi.org/10.36909/jer.ICMET.1719

    Article  Google Scholar 

  24. Yang, C., Lu, K., & Leung, K. W. (2022). Dielectric decoupler for compact MIMO antenna systems. IEEE Transactions on Antennas and Propagation, 70(8), 6444–6454. https://doi.org/10.1109/TAP.2022.3177555

    Article  Google Scholar 

  25. Kambali, V., Abegaonkar, M., Basu, A., & Design, A. A. (2017). Frequency reconfigurable compact MIMO antenna for WLAN application. In 2017 international symposium on antennas and propagation (ISAP) (pp. 1–2). IEEE.

  26. Pant, A., Singh, M., & Parihar, M. S. (2021). A frequency reconfigurable/switchable MIMO antenna for LTE and early 5G applications. AEU—International Journal of Electronics and Communications, 131(January), 153638. https://doi.org/10.1016/j.aeue.2021.153638

    Article  Google Scholar 

  27. Islam, H., Das, S., Ali, T., Bose, T., Prakash, O., & Kumar, P. (2022). A frequency reconfigurable MIMO antenna with bandstop filter decoupling network for cognitive communication. Sensors, 22(18), 6937.

    Article  Google Scholar 

  28. Thummaluru, S. R., Kumar, R., & Chaudhary, R. K. (2019). Isolation and frequency reconfigurable compact MIMO antenna for wireless local area network applications. IET Microwaves, Antennas & Propagation, 13(4), 519–525. https://doi.org/10.1049/iet-map.2018.5895

    Article  Google Scholar 

  29. Ali, W. A. E., Ashraf, M. I., & Salamin, M. A. (2021). A dual-mode double-sided 4 × 4 MIMO slot antenna with distinct isolation for WLAN/WiMAX applications. Microsystem Technologies, 27(3), 967–983. https://doi.org/10.1007/s00542-020-04984-6

    Article  Google Scholar 

  30. Ray, K. P. (2008). Design aspects of printed monopole antennas for ultra-wide band applications. International Journal of Antennas and Propagation, 2008, 1–8. https://doi.org/10.1155/2008/713858

    Article  Google Scholar 

Download references

Acknowledgements

I acknowledge the Electrical Engineering and Electronics and Communication Engineering departments of NIT, Rourkela, to provide HFSS Software, Vector Network Analyzer (VNA), and an anechoic chamber to model and test the proposed MIMO antenna structure.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The first author, Kabir Das Ayinala, is a Doctoral research scholar at the National Institute of Technology, Rourkela, India, and the second author, Prasanna Kumar Sahu, is the supervisor of the first author. All the authors have jointly contributed to this research. As the authors are students and guides, respectively, the contributions of all towards the preparation of the manuscript are significant.

Corresponding author

Correspondence to Kabir Das Ayinala.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics Approval

The authors confirm that the manuscript has not been submitted to any other journal for consideration for publication. This article does not contain any studies involving animals or human participants performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayinala, K.D., Sahu, P.K. Isolation Enhanced Compact Dual-Mode 4-Port MIMO Design Using Slot-Based Switchable DGS Decoupling Filters. Wireless Pers Commun 135, 805–833 (2024). https://doi.org/10.1007/s11277-024-11075-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11075-6

Keywords

Navigation