Skip to main content
Log in

Survey of Research on Application of Deep Learning in Modulation Recognition

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Modulation recognition is an important research branch in the field of communication, which is widely used in civil and military fields. The classic methods depend on decision theory, signal feature and the choice of classifier, while the deep learning network can get the signal feature directly from the data, and its recognition accuracy is higher than the classic methods. This paper summarized the application of deep learning in modulation recognition. Firstly, the basic concept of deep learning and the common network structure in modulation recognition were introduced. Secondly, the common signal forms and signal preprocessing technologies of input deep learning network were given, and the characteristics and performance of different deep learning networks were summarized and analyzed. Finally, the challenges and future research directions in this field were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

Data and materials are available on the reasonable request.

Abbreviations

ACGAN:

Auxiliary classifier generative adversarial network

AE:

Auto encoder

AI:

Artificial intelligence

AMC:

Automatic modulation classification

AM-DSB:

Amplitude modulation-double side band

AMR:

Automatic modulation recognition

AM-SSB:

Amplitude modulation-single side band

AN-SF-CNN:

Anti-noise processing and deep sparse filtered convolutional neural network

ASB:

Amplitude spectrums of bispectrum

ASK:

Amplitude-shift keying

BFSK:

Binary frequency-shift keying

BP:

Back-propagation

BPSK:

Binary phase-shift keying

CapsNet:

Capsule network

CCNN:

Compressive convolutional neural network

CGC:

Contrast-enhanced grid constellations images

CNN:

Convolutional neural network

ConvLSTM:

Convolutional long short-term memory

CPFSK:

Continuous-phase frequency-shift keying

DBN:

Deep belief networks

DL:

Deep learning

DNN:

Deep neural networks

DT:

Decision tree

FECNN:

Feature extraction convolutional neural network

FFNN:

Feed-forward neural networks

FFT:

Fast Fourier transform

FSK:

Frequency-shift keying

GAN:

Generative adversarial network

GMCNN:

Graph mapping convolutional neural network

GPU:

Graphics processing unit

GRU:

Gate recurrent unit

H-DNN:

Hierarchical deep neural networks

ILSVRC:

ImageNet large-scale visual recognition challenge

IQ:

In-phase quadrature

IBCNN:

Image-based CNN

KNN:

K-nearest neighbor

LSTM:

Long short-term memory

MCLDNN:

Multi-channel convolutional long short-term deep neural network

ML:

Machine learning

MLP:

Multilayer perceptron

MTL:

Multi-task learning

IBCNN:

Image-based CN

NAS:

Neural architecture search

AP:

Amplitude phase

PAM4:

Four pulse amplitude modulation

PSK:

Phase-shift keying

PSO:

Particle swarm optimization

QAM:

Quadrature amplitude modulation

QPSK:

Quadrature phase-shift keying

RBM:

Restricted Boltzmann machine

RC:

Regular constellation images

RNN:

Recurrent neural network

SCF:

Spectral correlation function

SCRNN:

Sequential convolutional recurrent neural networks

SF-CNN:

Sparse filtered convolutional neural network

SNR:

Signal to noise ratio

SSAE:

Stacked sparse auto encoder

SSRCNN:

Semi-supervised signal recognition convolutional neural network

STFT:

Short-time Fourier transform

SVM:

Support vector machine

UniQGAN:

Unified generative adversarial networks

VHF:

Very high frequency

WB-FM:

Wide band-frequency modulation

References

  1. Zhao, N., Zhang, S., Yu, F. R., et al. (2017). Exploiting interference for energy harvesting: A survey, research issues, and challenges. IEEE Access, 5, 10403–10421.

    Google Scholar 

  2. Höyhtyä, M., Mämmelä, A., Eskola, M., et al. (2016). Spectrum occupancy measurements: A survey and use of interference maps. IEEE Communications Surveys & Tutorials, 18(4), 2386–2414.

    Google Scholar 

  3. Azzouz, E. E., & Nandi, A. K. (1996). Automatic modulation recognition of communication signals. Springer.

    Google Scholar 

  4. Fu, X., et al. (2022). Lightweight automatic modulation classification based on decentralized learning. IEEE Transactions on Cognitive Communications and Networking, 8(1), 57–70.

    Google Scholar 

  5. Huynh-The, T., et al. (2021). Automatic modulation classification: A deep architecture survey. IEEE Access, 9, 142950–142971. https://doi.org/10.1109/ACCESS.2021.3120419

    Article  Google Scholar 

  6. Huang, S., Yao, Y., Wei, Z., et al. (2017). Automatic modulation classification of overlapped sources using multiple cumulants. IEEE Transactions on Vehicular Technology, 66(7), 6089–6101.

    Google Scholar 

  7. Dobre, O. A., Abdi, A., Bar-Ness, Y., et al. (2007). Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Communications, 1(2), 137–156.

    Google Scholar 

  8. Beidas, B. F., & Weber, C. L. (1998). Asynchronous classification of MFSK signals using the higher order correlation domain. IEEE Transactions on Communications, 46(4), 480–493.

    Google Scholar 

  9. Wei, W., & Mendel, J. M. (2000). Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Transactions on Communications, 48(2), 189–193.

    Google Scholar 

  10. Xu, J. L., Su, W., & Zhou, M. (2011). Likelihood-ratio approaches to automatic modulation classification. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, 41(4), 455–469.

    Google Scholar 

  11. Polydoros, A., & Kim, K. (1990). On the detection and classification of quadrature digital modulations in broad-band noise. IEEE Transactions on Communications, 38(8), 1199–1211.

    Google Scholar 

  12. Panagiotou, P., Anastasopoulos, A., & Polydoros, A. (2000). Likelihood ratio tests for modulation classification. In Milcom century military communications conference (pp. 670–674). IEEE.

  13. Ho, K. C., Prokopiw, W., & Chan, Y. T. (2000). Modulation identification of digital signals by the wavelet transform. IEEE Proceedings Radar Sonar & Navigation, 147(4), 169–176.

    Google Scholar 

  14. Swami, A., & Sadler, B. M. (2000). Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 48(3), 416–429.

    Google Scholar 

  15. Soliman, S. S., & Hsue, S. Z. (1992). Signal classification using statistical moments. IEEE Transactions on Communications, 40(5), 908–916.

    ADS  Google Scholar 

  16. Mobasseri, B. G. (2000). Digital modulation classification using constellation shape. Signal Processing, 80(2), 251–277.

    Google Scholar 

  17. Majhi, S., Gupta, R., Xiang, W., et al. (2017). Hierarchical hypothesis and feature based blind modulation classification for linearly modulated signals. IEEE Transactions on Vehicular Technology, 66(12), 11057–11069.

    Google Scholar 

  18. Lichun, L. (2002). Comments on “Signal classification using statistical moments.” IEEE Transactions on Communications, 50(2), 195.

    Google Scholar 

  19. Ali, A. K., & Erçelebi, E. (2019). An M-QAM signal modulation recognition algorithm in AWGN Channel. Scientific Programming. https://doi.org/10.1155/2019/6752694

    Article  Google Scholar 

  20. Ali, A. K., & Erçelebi, E. (2020). Algorithm for automatic recognition of PSK and QAM with unique classifier based on features and threshold levels. ISA Transactions, 102, 173–192.

    PubMed  Google Scholar 

  21. Hassanpour, S., Pezeshk, A. M., & Behnia F. (2016). Automatic digital modulation recognition based on novel features and support vector machine. In International conference on signal-image technology & internet-based systems (pp. 172–177). IEEE.

  22. Su, W. (2013). Feature space analysis of modulation classification using very high-order statistics. IEEE Communications Letters, 17(9), 1688–1691.

    ADS  Google Scholar 

  23. Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and KNN. IEEE Transactions on Wireless Communications, 11(8), 2742–2750.

    Google Scholar 

  24. Ahmadi, N., & Berangi, R. (2008). Modulation classification of QAM and PSK from their constellation using genetic algorithm and hierarchical clustering. In Information and communication technologies: From theory to applications (pp. 1–5). IEEE.

  25. Ma, J., & Qiu, T. (2018). Automatic modulation classification using cyclic correntropy spectrum in impulsive noise. IEEE Wireless Communications Letters, 8(2), 440–443.

    Google Scholar 

  26. Li, Z. et al. (2020). Research on signal modulation recognition method based on deep belief network. In 2020 international conference on communications, information system and computer engineering (CISCE), Kuala Lumpur, Malaysia, (pp. 59–62). https://doi.org/10.1109/CISCE50729.2020.00018

  27. Wang, L.-X., Ren, Y.-J., & Zhang, R.-H. (2009). Algorithm of digital modulation recognition based on support vector machines. In International conference on machine learning and cybernetics (pp. 980–983).

  28. Lv, J., Zhang, L., & Teng, X. (2016). A modulation classification based on SVM. In 2016 15th international conference on optical communications and networks (ICOCN) (pp. 1–3).

  29. Venkata Subbarao, M., & Samundiswary, P. (2018). Automatic modulation recognition in cognitive radio receivers using multi-order cumulants and decision trees. International Journal of Recent Technology and Engineering, 7(4), 61–69.

    Google Scholar 

  30. Hinton, G. E. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  31. Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In Advances in neural information processing systems (Vol. 25, no. 2).

  32. Sainath, T. N., Weiss, R. J., Senior, A., et al., Learning the speech front-end with raw waveform CLDNNs. In 16th annual conference of the International Speech Communication Association (ISCA) (pp. 1–5).

  33. Zhang, J., & Zong, C. (2019). Deep learning for natural language processing. In K. Huang, A. Hussain, Q. F. Wang, & R. Zhang (Eds.), Deep learning: Fundamentals, theory and applications. Springer.

    Google Scholar 

  34. Zhou, R., Liu, F., & Gravelle, C. W. (2020). Deep learning for modulation recognition: A survey with a demonstration. IEEE Access, 8, 67366–67376. https://doi.org/10.1109/ACCESS.2020.2986330

    Article  Google Scholar 

  35. Peng, S., Sun, S., & Yao, Y.-D. (2022). A survey of modulation classification using deep learning: Signal representation and data preprocessing. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 7020–7038. https://doi.org/10.1109/TNNLS.2021.3085433

    Article  MathSciNet  PubMed  Google Scholar 

  36. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.

    ADS  Google Scholar 

  37. Lecun, Y., & Bengio, Y. (1998). Convolutional networks for images, speech, and time series. MIT Press.

    Google Scholar 

  38. Ye, Y., & Wenbo, M. (2007). Digital modulation classification using multi-layer perceptron and time-frequency features. Journal of Systems Engineering and Electronics, 18(2), 249–254.

    Google Scholar 

  39. Ali, A. K., & Erçelebi, E. (2023). Modulation format identification using supervised learning and high-dimensional features. Arabian Journal for Science & Engineering, 48(2), 1461–1486.

    Google Scholar 

  40. Bouchou, M., Wang, H., & El Hadi Lakhdari, M. (2017). Automatic digital modulation recognition based on stacked sparse autoencoder. In 2017 IEEE 17th international conference on communication technology (ICCT) (pp. 28–32).

  41. Wang, F., Wang, Y., & Chen, X. (2017). Graphic constellations and DBN based automatic modulation classification. In 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–5).

  42. Peng, S., Jiang, H., Wang, H., et al. (2019). Modulation classification based on signal constellation diagrams and deep learning. IEEE Transactions on Neural Networks and Learning Systems, 30(3), 718–727.

    PubMed  Google Scholar 

  43. He, K., Zhang, X., Ren, S., et al. (2016). Deep residual learning for image recognition. In IEEE conference on computer vision & pattern recognition (pp. 770–778). IEEE Computer Society.

  44. Szegedy, C., Liu, W., Jia, Y., et al. (2015). Going deeper with convolutions. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1–9). IEEE.

  45. Huang, G., Liu, Z., Maaten, L. V. D., et al. (2017). Densely connected convolutional networks. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2261–2269). IEEE.

  46. Hu, S., Pei, Y., Liang, P. P., & Liang, Y.-C. (2018). Robust modulation classification under uncertain noise condition using recurrent neural network. In IEEE global communications conference (GLOBECOM) (pp. 1–7).

  47. Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., & Woo, W. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. arXiv:1506.04214.

  48. Li, M., Liu, G., Li, S., et al. (2018). Radio classify generative adversarial networks: a semi-supervised method for modulation recognition. In 2018 IEEE 18th international conference on communication technology (pp. 669–672). IEEE.

  49. Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.

    ADS  CAS  PubMed  Google Scholar 

  50. Bengio, Y., Simard, P., & Frascnoi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

    CAS  PubMed  Google Scholar 

  51. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    CAS  PubMed  Google Scholar 

  52. Ramjee, S., Ju, S., Yang, D., et al. (2019). Fast deep learning for automatic modulation classification. arXiv preprint, arXiv: 1901.05850.

  53. Rajendran, S., Meert, W., Giustiniano, D., et al. (2018). Distributed deep learning models for wireless signal classification with low-cost spectrum sensors. IEEE Transactions on Cognitive Communications and Networking, 4(3), 433–445.

    Google Scholar 

  54. Vaswani, A., Shazeer, N., Parmar, N., et al. Attention is all you need. arXiv:1706.03762.

  55. Chen, S., Zhang, Y., He, Z., et al. (2020). A novel attention cooperative framework for automatic modulation recognition. IEEE Access, 8, 15673–15686.

    Google Scholar 

  56. Li, L., Qin, C., et al. (2022). Transformer-based radio modulation mode recognition. Journal of Physics: Conference Series, 2384, 012017.

    Google Scholar 

  57. Kong, W., Yang, Q., Jiao, X., Niu, Y., & Ji, G. (2021). A transformer-based CTDNN structure for automatic modulation recognition. In 2021 7th international conference on computer and communications (ICCC), Chengdu, China (pp. 159–163). https://doi.org/10.1109/ICCC54389.2021.9674558.

  58. Wang, D., Lin, M., Zhang, X., Huang, Y., & Zhu, Y. (2023). Automatic modulation classification based on CNN-transformer graph neural network. Sensors, 23(16), 7281. https://doi.org/10.3390/s23167281

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  59. Zheng, Y., Ma, Y., & Tian, C. (2022). TMRN-GLU: A transformer-based automatic classification recognition network improved by gate linear unit. Electronics, 11(10), 1554. https://doi.org/10.3390/electronics11101554

    Article  Google Scholar 

  60. O'Shea, T. J., & West, N. (2016). Radio machine learning dataset generation with GNU radio. In Proceedings of the 6th GNU radio conference (Vol. 1, no. 1).

  61. O’Shea, T. J., Roy, T., & Clancy, T. C. (2018). Over-the-air deep learning based radio signal classification. IEEE Journal of Selected Topics in Signal Processing, 12(1), 168–179.

    ADS  Google Scholar 

  62. Tekbıyık, K., Keçeci, C., et al. (2019). HisarMod: A new challenging modulated signals dataset. IEEE Dataport, October 27, 2019. https://doi.org/10.21227/8k12-2g70.

  63. Durga Indira, N., & Venu Gopala Rao, M. (2022). Deep learning CNN-based hybrid extreme learning machine with bagging classifier for automatic modulation classification. International Journal of Intelligent Systems and Applications in Engineering, 10(2s), 134–141.

    Google Scholar 

  64. Le, H.-K., et al. (2022). Ensemble of convolution neural networks for improving automatic modulation classification performance. The University of Danang—Journal of Science and Technology, 20(6), 25–32.

    Google Scholar 

  65. Tekbıyık, K., Ekti, A. R., Görçin, A., Kurt, G. K., & Keçeci, C. Robust and fast automatic modulation classification with CNN under multipath fading channels. In 2020 IEEE 91st vehicular technology conference (VTC2020-Spring), Antwerp, Belgium (pp. 1–6).

  66. Theano Development Team. (2016). Theano: A Python framework for fast computation of mathematical expressions. arXiv preprint, arXiv:1605.02688.

  67. Collobert, R., Kavukcuoglu, K., & Farabet, C. (2011). Torch7: A MATLAB like environment for machine learning. In Proceedings of BigLearn conference and workshop on neural information processing systems (pp. 1–6).

  68. Abadi, M., Barham, P., Chen, J., et al. (2016). TensorFlow: A system for large-scale machine learning. arXiv preprint, arXiv:1605.08695.

  69. O’Shea, T. J., Corgan, J., & Clancy, T. C. (2016). Convolutional radio modulation recognition networks. Springer.

    Google Scholar 

  70. Liao, K., Tao, G., Zhong, Y., et al. (2019). Sequential convolutional recurrent neural networks for fast automatic modulation classification. arXiv preprint, arXiv:1909.03050.

  71. O’Shea, T. J., Roy, T., & Clancy, T. C. (2017). Over the air deep learning based radio signal classification. IEEE Journal of Selected Topics in Signal Processing, 12(1), 168–179.

    ADS  Google Scholar 

  72. West, N. E., & O'Shea, T. (2017). Deep architectures for modulation recognition. In IEEE international symposium on dynamic spectrum access networks (DySPAN) (pp. 1–6). IEEE.

  73. Wei, S., Zou, S., Liao, F., et al. (2019). Automatic modulation recognition using neural architecture search. In 2019 international conference on high performance big data and intelligent systems (HPBD&IS) (pp. 151–156). IEEE.

  74. Mossad, O. S., Elnainay, M., & Torki, M. (2019).Deep convolutional neural network with multi-task learning scheme for modulations recognition. In 2019 15th international wireless communications & mobile computing conference (IWCMC) (pp. 1644–1649). IEEE.

  75. Hong, D., Zhang, Z., & Xu, X. (2017). Automatic modulation classification using recurrent neural networks. In 2017 3rd IEEE international conference on computer and communications (ICCC) (pp. 695–700). IEEE.

  76. Wu, Y., Li, X., & Fang, J. (2018). A deep learning approach for modulation recognition via exploiting temporal correlations. In 2018 IEEE 19th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 1–5). IEEE.

  77. Dong, Y., Jiang, X., Cheng, L., et al. (2021). SSRCNN: A semi-supervised learning framework for signal recognition. IEEE Transactions on Cognitive Communications and Networking, 7(3), 780–789.

    Google Scholar 

  78. Njoku, J. N., Morocho-Cayamcela, M. E., & Lim, W. (2021). CGDNet: Efficient hybrid deep learning model for robust automatic modulation recognition. IEEE Networking Letters, 3(2), 47–51.

    Google Scholar 

  79. Li, L., Huang, J., Cheng, Q., et al. (2020). Automatic modulation recognition: A few-shot learning method based on the capsule network. IEEE Wireless Communication Letters, 10(3), 474–477.

    Google Scholar 

  80. Xu, J., Luo, C., Parr, G., et al. (2020). A spatiotemporal multi-channel learning framework for automatic modulation recognition. IEEE Wireless Communication Letters, 9(10), 1629–1632.

    Google Scholar 

  81. Xu, Y., Xu, G., Ma, C., & An, Z. (2022). An advancing temporal convolutional network for 5G latency services via automatic modulation recognition. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(6), 3002–3006.

    Google Scholar 

  82. Meng, F., Chen, P., Wu, L., et al. (2018). Automatic modulation classification: A deep learning enabled approach. IEEE Transactions on Vehicular Technology, 67(11), 10760–10772.

    Google Scholar 

  83. Liu, Y., Liu, Y., & Yang, C. (2020). Modulation recognition with graph convolutional network. IEEE Wireless Communications Letters, 9(5), 624–627.

    MathSciNet  Google Scholar 

  84. Gu, H., Wang, Y., Hong, S., et al. (2019). Blind channel identification aided generalized automatic modulation recognition based on deep learning. IEEE Access, 7, 110722–110729.

    Google Scholar 

  85. Xu, J., & Lin, Z. (2022). Modulation and classification of mixed signals based on deep learning. arXiv:2205.09916.

  86. Zha, X., Qin, X., Zhou, Y., et al. (2019). Power of deep learning for amplitude-phase signal modulation recognition. In 2019 IEEE 8th joint international information technology and artificial intelligence conference (ITAIC) (pp. 454–458). IEEE.

  87. Zheng, S., Qi, P., Chen, S., et al. (2019). Fusion methods for CNN-based automatic modulation classification. IEEE Access, 7, 66496–66504.

    Google Scholar 

  88. Wang, Y., Liu, M., Yang, J., et al. (2019). Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Transactions on Vehicular Technology, 68(4), 4074–4077.

    Google Scholar 

  89. An, Z., Zhang, T., Ma, B., & Xu, Y. (2021). Blind multicarrier waveform recognition based on spatial-temporal learning neural networks. Digital Signal Processing, 111, 102994.

    Google Scholar 

  90. Zhang, Y., Liu, T., Zhang, L., et al. (2018). A deep learning approach for modulation recognition. In IEEE 23rd international conference on digital signal processing (pp. 1–5). IEEE.

  91. Karra, K., Kuzdeba, S., & Petersen, J. (2017). Modulation recognition using hierarchical deep neural networks. In IEEE international symposium on dynamic spectrum access networks (pp. 1–3). IEEE.

  92. Teng, C., Liao, C., Chen, C., et al. (2018). Polar feature based deep architectures for automatic modulation classification considering channel fading. In IEEE global conference on signal & information processing. IEEE.

  93. Shi, W., Liu, D., Cheng, X., et al. (2019). Particle swarm optimization-based deep neural network for digital modulation recognition. IEEE Access, 7, 104591–104600.

    Google Scholar 

  94. Ali, A., & Yanyu, F. (2017). Automatic modulation classification using deep learning based on sparse autoencoders with nonnegativity constraints. IEEE Signal Processing Letters, 24(11), 1626–1630.

    ADS  Google Scholar 

  95. Aubry, A., Bazzoni, A., Carotenuto, V., et al. (2011). Cumulants-based radar specific emitter identification. In IEEE international workshop on information forensics and security. IEEE.

  96. Abdelmutalab, A., Assaleh, K., & El-Tarhuni, M. (2016). Automatic modulation classification based on high order cumulants and hierarchical polynomial classifiers. Physical Communication, 21, 10–18.

    Google Scholar 

  97. Xie, W., Hu, S., Liao, J., et al. (2019). Deep learning in digital modulation recognition using high order cumulants. IEEE Access, 7, 63760–63766.

    Google Scholar 

  98. Li, J., Qi, L., & Lin, Y. (2016). Research on modulation identification of digital signals based on deep learning. In Proceedings of the 2016 IEEE international conference on electronic information and communication technology (pp. 402–405). IEEE.

  99. Li, R., Li, L., Yang, S., et al. (2018). Robust automated VHF modulation recognition based on deep convolutional neural networks. IEEE Communications Letters, 22(5), 946–949.

    Google Scholar 

  100. Wang, F., Yang, C., Huang, S., et al. (2018). Automatic modulation classification based on joint feature map and convolutional neural network. IET Radar, Sonar & Navigation, 13(6), 998–1003.

    Google Scholar 

  101. Zeng, Y., Zhang, M., Han, F., et al. (2019). Spectrum analysis and convolutional neural network for automatic modulation recognition. IEEE Wireless Communications Letters, 8(3), 929–932.

    Google Scholar 

  102. Mendis, G. J., Wei, J., & Madanayake, A. (2016). Deep learning-based automated modulation classification for cognitive radio. In IEEE international conference on communication systems (pp. 1–6). IEEE.

  103. Li, Y., Shao, G., & Wang, B. (2019). Automatic modulation classification based on bispectrum and CNN. In IEEE 8th joint international information technology and artificial intelligence conference (pp. 311–316). IEEE.

  104. Hauser, S. C., Headley, W. C., & Michaels, A. J. (2017). Signal detection effects on deep neural networks utilizing raw IQ for modulation classification. In IEEE military communications conference (pp. 121–127). IEEE.

  105. Zhou, L., Sun, Z., & Wang, W. (2017). Learning to short-time Fourier transform in spectrum sensing. Physical Communication, 25, 420–425.

    Google Scholar 

  106. Liu, Z., Li, L., Xu, H., et al. (2018). A method for recognition and classification for hybrid signals based on deep convolutional neural network. In Proceedings of the 2018 international conference on electronics technology. (pp. 325–330). IEEE.

  107. Wang, Y., Guo, J., Li, H., et al. (2017). CNN based modulation classification in the complicated communication channel. In Proceedings of the 13th IEEE international conference on electronic measurement and instruments (pp. 512–516). IEEE.

  108. Hassan, K., Dayoub, I., Hamouda, W., et al. (2010). Automatic modulation recognition using wavelet transform and neural networks in wireless systems. Eurasip Journal on Advances in Signal Processing, 1, 532898.

    Google Scholar 

  109. Ramkumar, B. (2009). Automatic modulation classification for cognitive radios using cyclic feature detection. IEEE Circuits and Systems Magazine, 9(2), 27–45.

    Google Scholar 

  110. Wang, D., Zhang, M., Li, J., et al. (2017). Intelligent constellation diagram analyzer using convolutional neural network-based deep learning. Optics Express, 25(15), 17150–17166.

    ADS  PubMed  Google Scholar 

  111. Tu, Y., Lin, Y., Wang, J., et al. (2018). Semi-supervised learning with generative adversarial networks on digital signal modulation classification. Computers Materials & Continua, 55(2), 243–254.

    Google Scholar 

  112. Peng, S., Jiang, H., Alwageed, H., et al. (2017). Modulation classification using convolutional neural network based deep learning model. In 26th wireless and optical communication conference (pp. 1–5). IEEE.

  113. Tang, B., Tu, Y., Zhang, Z., et al. (2018). Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks. IEEE Access, 6, 15713–15722.

    Google Scholar 

  114. Huang, S., Chai, L., Li, Z., et al. (2019). Automatic modulation classification using compressive convolutional neural network. IEEE Access, 7, 79636–79643.

    Google Scholar 

  115. Ali, A., & Yanyu, F. (2017). Unsupervised feature learning and automatic modulation classification using deep learning model. Physical Communication, 25, 75–84.

    Google Scholar 

  116. Ali, A., Yangyu, F., & Liu, S. (2017). Automatic modulation classification of digital modulation signals with stacked autoencoders. Digital Signal Processing, 71, 108–116.

    MathSciNet  Google Scholar 

  117. An, Z., Zhang, T., Shen, M., et al. (2022). Series-constellation feature based blind modulation recognition for beyond 5G MIMO-OFDM systems with channel fading. IEEE Transactions on Cognitive Communications and Networking, 8(2), 793–811.

    Google Scholar 

  118. An, Z., Xu, Y., Pedersen, G. F., & Shen, M. (2023). AI-driven signal recognition in B5G FBMC-OQAM industrial cognitive radio networks via transform channel convolution strategy. Computers, Materials & Continua, 1(1 (Published)), 1–15.

    Google Scholar 

  119. An, Z., Zhang, T., Ma, B., et al. (2021). Blind high-order modulation recognition for beyond 5G OSTBC-OFDM systems via projected constellation vector learning network. IEEE Communications Letters, 26(1), 84–88.

    Google Scholar 

  120. An, Z., Zhang, T., Ma, B., et al. (2022). A two-stage high-order modulation recognition based on projected accumulated constellation vector in non-cooperative B5G OSTBC-OFDM systems. Signal Processing, 200, 108673.

    Google Scholar 

  121. Xu, Y., Xu, G., & Ma, C. (2022). A novel blind high-order modulation classifier using accumulated constellation temporal convolution for OSTBC-OFDM systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(9), 3959–3963. https://doi.org/10.1109/TCSII.2022.3177760

    Article  Google Scholar 

  122. An, Z., Zhang, T., Xu, Y., Pedersen, G. F., & Shen, M. (2023). Multimodality-aided multicarrier waveform recognition in low SNR regimes based on denoised cyclic autocorrelation transformation. IEEE Transactions on Aerospace and Electronic Systems, 59(5), 5859–5875.

    Google Scholar 

  123. O’Shea, T. J., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications & Networking, 3(4), 563–575.

    Google Scholar 

  124. Zhang, H., Huang, M., Yang, J., & Sun, W. (2021). A data preprocessing method for automatic modulation classification based on CNN. IEEE Communications Letters, 25(4), 1206–1210.

    Google Scholar 

  125. Kim, S.-H., Moon, C.-B., Kim, J.-W., & Kim, D.-S. (2022). A hybrid deep learning model for automatic modulation classification. IEEE Wireless Communications Letters, 11(2), 313–317.

    CAS  Google Scholar 

  126. Elsken, T., Metzen, J. H., & Hutter, F. (2018). Neural architecture search: A survey. arXiv preprint, arXiv:1808.05377.

  127. Zhang, Z., Luo, H., Wang, C., Gan, C., & Xiang, Y. (2020). Automatic modulation classification using CNN-LSTM based dual-stream structure. IEEE Transactions on Vehicular Technology, 69(11), 13521–13531.

    Google Scholar 

  128. Chang, S., Huang, S., Zhang, R., Feng, Z., & Liu, L. (2022). Multitask-learning-based deep neural network for automatic modulation classification. IEEE Internet of Things Journal, 9(3), 2192–2206.

    Google Scholar 

  129. Huang, S., et al. (2020). Automatic modulation classification using gated recurrent residual network. IEEE Internet of Things Journal, 7(8), 7795–7807.

    Google Scholar 

  130. Zhang, F., Luo, C., Xu, J., & Luo, Y. (2021). An efficient deep learning model for automatic modulation recognition based on parameter estimation and transformation. IEEE Communications Letters, 25(10), 3287–3290.

    Google Scholar 

  131. Weng, L., He, Y., et al. (2021). Deep cascading network architecture for robust automatic modulation classification. Neurocomputing, 455, 308–324.

    Google Scholar 

  132. Zhou, Q., Zhang, R., Mu, J., Zhang, H., Zhang, F., & Jing, X. (2022). AMCRN: Few-shot learning for automatic modulation classification. IEEE Communications Letters, 26(3), 542–546.

    ADS  Google Scholar 

  133. Lee, I., & Lee, W. (2022). UniQGAN: Unified generative adversarial networks for augmented modulation classification. IEEE Communications Letters, 26(2), 355–358.

    Google Scholar 

  134. Kim, S., Yang, H.-Y., & Kim, D. (2022). Fully complex deep learning classifiers for signal modulation recognition in non-cooperative environment. IEEE Access, 10, 20295–20311.

    Google Scholar 

  135. Chen, Z., et al. (2022). SigNet: A novel deep learning framework for radio signal classification. IEEE Transactions on Cognitive Communications and Networking, 8(2), 529–541.

    Google Scholar 

  136. Xuan, Q., et al. (2022). AvgNet: Adaptive visibility graph neural network and its application in modulation classification. IEEE Transactions on Network Science and Engineering, 9(3), 1516–1526.

    MathSciNet  Google Scholar 

  137. Trabelsi, C., Bilaniuk, O., Zhang, Y., et al. (2018). Deep complex networks. arXiv preprint, arXiv:1705.09792.

  138. Krzyston, J., Bhattacharjea, R., & Stark A. (2020). Complex valued convolutions for modulation recognition using deep learning. In 2020 IEEE international conference on communications workshops. (pp. 1–6). IEEE.

  139. Zhang, D., Lu, Y., Li, Y., Ding, W., & Zhang, B. (2021). High-order convolutional attention networks for automatic modulation classification in communication. IEEE Transactions on Wireless Communications, 14(8), 1–12.

    CAS  Google Scholar 

  140. Sadeghi, M., & Larsson, E. G. (2019). Adversarial attacks on deep-learning based radio signal classification. IEEE Wireless Communications Letters, 8(1), 213–216.

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant 62171345.

Author information

Authors and Affiliations

Authors

Contributions

YS: conceptualization, methodology, writing—review & editing. WW: writing—original draft, visualization.

Corresponding author

Correspondence to Yongjun Sun.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wu, W. Survey of Research on Application of Deep Learning in Modulation Recognition. Wireless Pers Commun 133, 1483–1515 (2023). https://doi.org/10.1007/s11277-023-10826-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10826-1

Keywords

Navigation