Skip to main content
Log in

Robust Palm-print Recognition Using Multi-resolution Texture Patterns with Artificial Neural Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Palm-print recognition system is extensively deployed in a variety of applications, ranging from forensic to mobile phones. This paper proposes a new feature extraction technique for robust palm-print based recognition. The method combines the angle information of an edge operator and multi-scale uniform patterns, which extracts texture patterns at different angular space and spatial resolution. Thus, making the extracted uniform patterns less sensitive to the pixel level values. Further, an optimal artificial neural network structure is developed for classification, which helps in maintaining the higher classification accuracy by significantly reducing the computational complexity. The proposed method is tested on standard PolyU, IIT-Delhi and CASIA palm-print databases. The method yields an equal error rate of 0.2% and classification accuracy of 98.52% on PolyU database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the further research work but are available from the corresponding author on reasonable request.

References

  1. Jain, A. K., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 4–20.

    Article  Google Scholar 

  2. Valdes-Ramirez, D., Medina-Pérez, M. A., & Monroy, R. (2021). An ensemble of fingerprint matching algorithms based on cylinder codes and mtriplets for latent fingerprint identification. Pattern Analysis and Applications, 24, 433–444. https://doi.org/10.1007/s10044-020-00911-7

    Article  Google Scholar 

  3. Nachar, R., Inaty, E., Bonnin, P. J., et al. (2020). Hybrid minutiae and edge corners feature points for increased fingerprint recognition performance. Pattern Analysis and Applications, 23, 213–224. https://doi.org/10.1007/s10044-018-00766-z

    Article  Google Scholar 

  4. Langoni, V., & Gonzaga, A. (2020). Evaluating dynamic texture descriptors to recognize human iris in video image sequence. Pattern Analysis and Applications, 23, 771–784. https://doi.org/10.1007/s10044-019-00836-w

    Article  Google Scholar 

  5. Lima, V. C. D., Melo, V. H. C., & Schwartz, W. R. (2021). Correction to: Simple and efficient pose-based gait recognition method for challenging environments. Pattern Analysis and Applications, 24, 509. https://doi.org/10.1007/s10044-020-00945-x

    Article  Google Scholar 

  6. Lima, V. C. D., Melo, V. H. C., & Schwartz, W. R. (2021). Simple and efficient pose-based gait recognition method for challenging environments. Pattern Analysis and Applications, 24, 497–507. https://doi.org/10.1007/s10044-020-00935-z

    Article  Google Scholar 

  7. Aguado-Martínez, M., Hernández-Palancar, J., Castillo-Rosado, K., et al. (2021). Document scanners for minutiae-based palmprint recognition: A feasibility study. Pattern Analysis and Applications, 24, 459–472. https://doi.org/10.1007/s10044-020-00923-3

    Article  Google Scholar 

  8. Kamboj, A., Rani, R., Nigam, A., et al. (2021). CED-Net: Context-aware ear detection network for unconstrained images. Pattern Analysis and Applications, 24, 779–800. https://doi.org/10.1007/s10044-020-00914-4

    Article  Google Scholar 

  9. Ajmera, P., Jadhav, R., & Holambe, R. S. (2011). Text-independent speaker identification using Radon and discrete cosine transforms based features from speech spectrogram. Pattern Recognition, 44(10–11), 2749–2759.

    Article  Google Scholar 

  10. Kagawade, V. C., & Angadi, S. A. (2021). Savitzky-Golay filter energy features-based approach to face recognition using symbolic modeling. Pattern Analysis and Applications. https://doi.org/10.1007/s10044-021-00991-z

    Article  Google Scholar 

  11. Ayeche, F., & Alti, A. (2021). HDG and HDGG: An extensible feature extraction descriptor for effective face and facial expressions recognition. Pattern Analysis and Applications. https://doi.org/10.1007/s10044-021-00972-2

    Article  Google Scholar 

  12. Nakouri, H. (2021). Two-dimensional Subclass Discriminant Analysis for face recognition. Pattern Analysis and Applications, 24, 109–117. https://doi.org/10.1007/s10044-020-00905-5

    Article  Google Scholar 

  13. Qingqiao, H., Siyang, Y., Huiyang, N., et al. (2020). An end to end deep neural network for iris recognition. Procedia Computer Science, 174, 505–517.

    Article  Google Scholar 

  14. Zhang, S., & Gu, X. (2013). Palmprint recognition based on the representation in the feature space. Optik, 124, 5434–5439.

    Article  Google Scholar 

  15. Jing, L., Jian, C., & Kaixuan, L. (2013). Improve the two-phase test samples representation method for palmprint recognition. Optik, 1124(24), 6651–6656.

    Google Scholar 

  16. Ali, M. M., Yannawar, P., & Gaikwad, A. T. (2016, March). Study of edge detection methods based on palmprint lines. In International Conference on Electrical, Electronics, and Optimization Techniques (pp. 1344-1350).

  17. You, J., Li, W. X., & Zhang, D. (2002). Hierarchical palmprint identification via multiple feature extraction. Pattern Recognition, 35, 847–859.

    Article  Google Scholar 

  18. Zhang, D., Kong, W. K., You, J., et al. (2003). On-line palmprint identification. IEEE Transactions on Pattern Analysis and Machine Intelligence., 25(9), 1041–1050.

    Article  Google Scholar 

  19. Diaz, M. R., Travieso, C. M. Alonso, J. B.. et al. (2004). Biometric system based in the feature of hand palm. In Proceedings of International Carnahan Conference on Security Technology (pp. 136–139).

  20. Kong, A., Zhang, D., & Kamel, M. (2006). Palmprint identification using feature-level fusion. Pattern Recognit., 39(3), 478–487.

    Article  Google Scholar 

  21. Sun, Z., Tan, T., Wang, Y., et al. (2005). Ordinal palmprint representation for personal identification. 2005. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (pp. 279–284).

  22. Jia, W., Hu, R. X., Lei, Y. K., et al. (2014). Histogram of oriented lines for palmprint recognition. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(3), 385–395.

    Article  Google Scholar 

  23. Mokni, R., Hassen, D., & Monji, K. (2017). Combining shape analysis and texture pattern for palmprint identification. Multimedia Tools and Applications, 76, 23981–24008.

    Article  Google Scholar 

  24. Luo, Y. T., Zhao, L. Y., Bob, Z., et al. (2016). Local line directional pattern for palmprint recognition. Pattern Recognition, 50, 26–44.

    Article  Google Scholar 

  25. Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59.

    Article  Google Scholar 

  26. Tamrakar, D., & Khanna, P. (2015). Occlusion invariant palmprint recognition with ULBP histograms. In Int. conf. on Image and Signal processing (pp. 491–500).

  27. Guo, X., Zhou, W., & Yanli, Z. (2017). Collaborative representation with HM-LBP features for palmprint recognition. Machine Vision and Applications., 28, 283–291.

    Article  Google Scholar 

  28. Li, G., & Kim, J. (2017). Palmprint recognition with local micro-structure tetra pattern. Pattern Recognition, 61, 29–46.

    Article  Google Scholar 

  29. Zhang, S., Wang, H., Wenzhun, H., et al. (2018). Combining Modified LBP and Weighted SRC for Palmprint Recognition. Signal, Image and Video Processing, 12, 1035–1042.

    Article  Google Scholar 

  30. Karanwal, S., & Diwakar, M. (2021). Neighborhood and center difference-based-LBP for face recognition. Pattern Analysis and Applications, 24, 741–761. https://doi.org/10.1007/s10044-020-00948-8

    Article  Google Scholar 

  31. Michael, G. K. O., Connie, T., & Jin, A. T. B. (2008). Touch-less palm print biometrics: Novel design and implementation. Image and Vision Computing, 26(12), 1551–1560.

    Article  Google Scholar 

  32. Shorrock, S., Yannopoulos, A., Dlay, S., et al. (2000). Biometric verification of computer users with probabilistic and cascade forward neural networks (pp. 267–272). Advances in Physics.

    Google Scholar 

  33. Connie, T., Jin, A. T. B., Ong, M. G. K., et al. (2005). An automated palmprint recognition system. Image and Vision Computing., 23(5), 501–515.

    Article  Google Scholar 

  34. Nigam, A., & Gupta, P. (2015). Designing an accurate hand biometric based authentication system fusing finger knuckle print and palmprint. Neurocomputing, 151(1), 120–132.

    Google Scholar 

  35. Jaswal, G., Amit, K., & Ravinder, N. (2018). Multiple feature fusion for unconstrained palm print authentication. Computers and Electrical Engineering, 72, 53–78.

    Article  Google Scholar 

  36. Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.

    Article  Google Scholar 

  37. Ukil, A., Shah, V. H., & Deck, B. (2011). Fast computation of arctangent functions for embedded applications: a comparative analysis. In IEEE International Sym-posium on Industrial Electronics (pp. 1206–1211).

  38. Huang, T., Burnett, J., & Deczky, A. (1975). The importance of phase in image processing filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(6), 529–542.

    Article  Google Scholar 

  39. Oppenheim, A. V., & Lim, J. S. (1981). The importance of phase in signals. Proceedings of the IEEE, 69(5), 529–541.

    Article  Google Scholar 

  40. Mazumdar, D., Mitra, S., Ghosh, K., et al. (2021). Analysing the patterns of spatial contrast discontinuities in natural images for robust edge detection. Pattern Analysis and Applications. https://doi.org/10.1007/s10044-021-00976-y

    Article  Google Scholar 

  41. Junli, L., Gengyun, Y., & Guanghui, Z. (2012). Evaluation of tobacco mixing uniformity based on chemical composition. In 31st Chinese Control Conference (pp. 7552–7555).

  42. Fausett, L. V., & Hall, P. (1994). Fundamentals of neural networks: Architectures, algorithms, and applications. Prentice-Hall.

    Google Scholar 

  43. Woo, W., & Dlay, S. (2005). Regularised nonlinear blind signal separation using sparsely connected network. IEE Proceedings-Vision, Image and Signal Processing, 152(1), 61–73.

    Article  Google Scholar 

  44. Kou, J., Xiong, S., & Wan, S. (2010). The incremental probabilistic neural network. Sixth International Conference on Natural Computation., 3, 1330–1333.

    Article  Google Scholar 

  45. Kwak, C., Ventura, J. A., & Tofang-Sazi, K. (2000). A neural network approach for defect identification and classification on leather fabric. Journal of Intelligent Manufacturing, 11, 485–499.

    Article  Google Scholar 

  46. Li, Y., & Zhang, C. (2016). Automated vision system for fabric defect inspection using Gabor filters and PCNN. Springerplus. https://doi.org/10.1186/s40064-016-2452-6

    Article  Google Scholar 

  47. Wei, P., Liu, C., Liu, M., Gao, Y., & Liu, H. (2018). CNN-based reference comparison method for classifying bare PCB defects. J. Eng., 2018(16), 1528–1533. https://doi.org/10.1049/joe.2018.8271

    Article  Google Scholar 

  48. Liu, F., Su, L., Fan, M., Yin, J., He, Z., & Lu, X. (2017). Using scanning acoustic microscopy and LM-BP algorithm for defect inspection of micro solder bumps. Microelectronics Reliability, 79, 166–174. https://doi.org/10.1016/j.microrel.2017.10.029

    Article  Google Scholar 

  49. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In IEEE International Conference on Neural Networks, Piscataway (pp. 1942–1948).

  50. Wang, D., Tan, D., & Liu, L. (2017). Particle swarm optimization algorithm: An overview. Soft Computing, 22, 387–408.

    Article  Google Scholar 

  51. PolyU palmprint database. Available at http://www.comp.polyu.edu.hk/~biometrics/:

  52. CASIA palm-print image database: Available at http://biometrics.idealtest.org/

  53. IIT Delhi touchless palmprint database. Available athttp://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Palm.htm

  54. Al-Nima, R. R. O., Dlay, S. S., Woo, W. L., et al. (2016). A novel biometric approach to generate ROC curve from the probabilistic neural network. In 24th Signal Processing and Communication Application Conference, SIU. (pp. 141–144).

  55. Wang, X., Gong, H., Zhang, H., Li, B., et al. (2016). Palmprint identification using boosting local binary pattern. International Conference on Pattern Recognition, 3, 503–506.

    Google Scholar 

  56. Jabid, T., Kabir, M. H., & Chae, O. (2010). Robust facial expression recognition based on local directional pattern. ETRI Journal, 32(5), 784–794.

    Article  Google Scholar 

  57. Tarawneh, A. S., Chetverikov, D., and Hassanat, A. B. (2018). Pilot comparative study of different deep features for palmprint identification in low-quality images. https://arxiv.org/abs/1804.04602

Download references

Funding

The authors have not received any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Poonam Poonia and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Poonam Poonia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonia, P., Ajmera, P.K. Robust Palm-print Recognition Using Multi-resolution Texture Patterns with Artificial Neural Network. Wireless Pers Commun 133, 1305–1323 (2023). https://doi.org/10.1007/s11277-023-10819-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10819-0

Keywords

Navigation