Skip to main content
Log in

Edge Detection Using Guided Sobel Image Filtering

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Edge detection plays a vital role in numerous engineering and scientific applications, serving as a crucial technique for identifying disruptions, irregularities, boundaries, and other significant features. However, the identification and detection of correct edges are not straightforward, as edge detection depends on image quality parameters such as blur, noise, and edge strength. The traditional edge detection methods, which are based on the gradient of the pixels, suffer from various drawbacks, including false acceptance and rejection of edges. Emerging methodologies, such as those incorporating soft computing or adopting a holistic approach, have been introduced to enhance edge detection. However, these methods often come with increased computational complexity. The accuracy of edge detection heavily depends on factors such as the learning strategy, fitness function, and careful fine-tuning of learning parameters. In this work, we propose a hybrid scheme that considers both weighted guided image filtering and the Sobel mask for accurate edge detection. The weighted guided image filtering enhances edges, while the Sobel mask is used for edge detection. We conducted experiments on a wide variety of images and databases, and it has been found that the proposed mechanism is superior to recently proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5:
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and materials

Yes.

Code availability

No.

References

  1. Petrou, M., & Petrou, C. (2010). Image processing: The fundamentals. Wiley.

    Book  MATH  Google Scholar 

  2. Bovik, A. C. (2010). Handbook of image and video processing. Academic Press.

    MATH  Google Scholar 

  3. Shah, M. (1997). Fundamentals of computer vision. University of Central Florida.

    Google Scholar 

  4. Gevers, T., Gijsenij, A., Van de Weijer, J., & Geusebroek, J. M. (2012). Color in computer vision: Fundamentals and applications (Vol. 23). Wiley.

    Book  Google Scholar 

  5. Shih, F. Y. (2010). Image processing and pattern recognition: Fundamentals and techniques. Wiley.

    Book  Google Scholar 

  6. Kanopoulos, N., Vasanthavada, N., & Baker, R. L. (1988). Design of an image edge detection filter using the Sobel operator. IEEE Journal of Solid-State Circuits, 23(2), 358–367.

    Article  Google Scholar 

  7. Clark, J. J. (1989). Authenticating edges produced by zero-crossing algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1), 43–57.

    Article  MathSciNet  MATH  Google Scholar 

  8. Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London. Series B. Biological Sciences, 207(1167), 187–217.

    Google Scholar 

  9. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 679–698.

    Article  Google Scholar 

  10. Konishi, S., Yuille, A. L., Coughlan, J. M., & Zhu, S. C. (2003). Statistical edge detection: Learning and evaluating edge cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1), 57–74.

    Article  Google Scholar 

  11. Martin, D. R., Fowlkes, C. C., & Malik, J. (2004). Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5), 530–549.

    Article  Google Scholar 

  12. Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2010). Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 898–916.

    Article  Google Scholar 

  13. Dollar, P., Tu, Z., & Belongie, S. (2006). Supervised learning of edges and object boundaries. In 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR'06) (Vol. 2, pp. 1964–1971). IEEE.

  14. Ren, X. (2008). Multi-scale improves boundary detection in natural images. In European conference on computer vision (pp. 533–545). Berlin: Springer.

  15. Lim, J. J., Zitnick, C. L., & Dollár, P. (2013). Sketch tokens: A learned mid-level representation for contour and object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3158–3165).

  16. Dollár, P., & Zitnick, C. L. (2014). Fast edge detection using structured forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8), 1558–1570.

    Article  Google Scholar 

  17. Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In Proceedings of the IEEE international conference on computer vision (pp. 1395–1403).

  18. Witkin, A. (1984). Scale-space filtering: A new approach to multi-scale description. In ICASSP'84. IEEE international conference on acoustics, speech, and signal processing (Vol. 9, pp. 150–153). IEEE.

  19. Yuille, A. L., & Poggio, T. A. (1986). Scaling theorems for zero crossings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 15–25.

    Article  MATH  Google Scholar 

  20. Ganin, Y., & Lempitsky, V. (2014). N4-fields: Neural network nearest neighbor fields for image transforms. In Asian conference on computer vision (pp. 536–551). Cham: Springer.

  21. Shen, W., Wang, X., Wang, Y., Bai, X., & Zhang, Z. (2015). Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3982–3991).

  22. Bertasius, G., Shi, J., & Torresani, L. (2015). Deepedge: A multi-scale bifurcated deep network for top-down contour detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4380–4389).

  23. Hwang, J.-J., & Liu, T.-L. (2015). Pixel-wise deep learning for contour detection. arXiv preprint arXiv:1504.01989.

  24. Neverova, N., Wolf, C., Taylor, G. W., & Nebout, F. (2014). Multi-scale deep learning for gesture detection and localization. In European conference on computer vision (pp. 474–490). Cham: Springer.

  25. Aborisade, D. O. (2010). Fuzzy logic based digital image edge detection. Global Journal of Computer Science and Technology, 10, 78–83.

    Google Scholar 

  26. Hien, N. M., Binh, N. T., & Viet, N. Q. (2017). Edge detection based on Fuzzy C Means in medical image processing system. In 2017 international conference on system science and engineering (ICSSE) (pp. 12–15). IEEE.

  27. Raheja, S., & Kumar, A. (2019). Edge detection based on type-1 fuzzy logic and guided smoothening. Evolving Systems, 12, 1–16.

    Google Scholar 

  28. Gonzalez, C. I., Melin, P., & Castillo, O. (2017). Edge detection method based on general type-2 fuzzy logic applied to color images. Information, 8(3), 104.

    Article  Google Scholar 

  29. Tab, F. A., & Shahryari, O. K. (2009). Fuzzy edge detection based on pixel's gradient and standard deviation values. In Proceedings of Computer Science and Information Technology, IMCSIT'09 (pp. 7–10).

  30. Alshennawy, A. A., & Aly, A. A. (2009). Edge detection in digital images using fuzzy logic technique. World Academy of Science, Engineering and Technology., 24(51), 1781–1786.

    Google Scholar 

  31. Farbod, M., Akbarizadeh, G., Kosarian, A., & Rangzan, K. (2018). Optimized fuzzy cellular automata for synthetic aperture radar image edge detection. Journal of Electronic Imaging, 27(1), 013030.

    Article  Google Scholar 

  32. Kim, D. S., Lee, W. H., & Kweon, I. S. (2004). Automatic edge detection using 3× 3 ideal binary pixel patterns and fuzzy-based edge thresholding. Pattern Recognition Letters., 25(1), 101–106.

    Article  Google Scholar 

  33. Naumenko, A., Lukin, V., & Egiazarian, K. (2012). SAR-image edge detection using artificial neural network. In Proceedings of international conference on mathematical methods in electromagnetic theory (MMET) (pp. 508–512).

  34. Verma, O. P., & Sharma, R. (2011). An optimal edge detection using universal law of gravity and ant colony algorithm. In Proceedings of information and communication technologies (WICT) (pp. 507–511).

  35. Setayesh, M., Zhang, M., & Johnston, M. (2012). Effects of static and dynamic topologies in particle swarm optimisation for edge detection in noisy images. In Proceedings of evolutionary computation (CEC) (pp. 1–8).

  36. Kumar, A., & Raheja, S (2020). Edge detection using guided image filtering and ant colony optimization. In The international conference on recent innovations in computing (pp. 319–330). Singapore: Springer.

  37. Kumar, A., & Raheja, S. (2020). Edge detection using guided image filtering and enhanced ant colony optimization. Procedia Computer Science, 173, 8–17.

    Article  Google Scholar 

  38. Xu, L., Lu, C., Xu, Y., & Jia, J. (2011). Image smoothing via L0 gradient minimization. ACM Transactions on Graphics., 30(6), 174.

    Article  Google Scholar 

  39. He, K., Sun, J., & Tang, X. (2012). Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1397–1409.

    Article  Google Scholar 

  40. Sun, X., Liu, H., Wu, S., Fang, Z., Li, C., & Yin, J. (2017). Low-light image enhancement based on guided image filtering in gradient domain. International Journal of Digital Multimedia Broadcasting, 2017. Article ID 9029315 | https://doi.org/10.1155/2017/9029315

  41. Ding, X., Chen, L., Zheng, X., Huang, Y., & Zeng, D. (2016). Single image rain and snow removal via guided L0 smoothing filter. Multimedia Tools and Applications., 75(5), 2697–2771.

    Article  Google Scholar 

  42. Chawla, N. V., Japkowicz, N., & Drive, P. (2004). Editorial: Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1), 1–6.

    Article  Google Scholar 

  43. Liu, G., & Haralick, R. M. (2002). Optimal matching problem in detection and recognition performance evaluation. Pattern Recognition, 35(10), 2125–2139.

    Article  MATH  Google Scholar 

  44. Van Heel, M. (1987). Similarity measures between images. Ultramicroscopy, 21(1), 95–100.

    Article  Google Scholar 

  45. Wesolkowski, S., Jernigan, M. E., & Dony, R. D. (2000). Comparison of color image edge detectors in multiple color spaces. In 2000 International conference on image processing, 2000. Proceedings (Vol. 2, pp. 796–799). IEEE.

  46. Hore, A., & Ziou, D. (2010). Image quality metrics: PSNR vs. SSIM. In 2010 20th international conference on pattern recognition (ICPR) (pp. 2366–2369). IEEE.

  47. Ma, X., & Grimson, W. E. L. (2005). Edge-based rich representation for vehicle classification. In Tenth IEEE international conference on computer vision, 2005. ICCV 2005. (Vol. 2, pp. 1185–1192). IEEE.

  48. Nadernejad, E., Sharifzadeh, S., & Hassanpour, H. (2008). Edge detection techniques: Evaluations and comparisons. Applied Mathematical Sciences, 2(31), 1507–1520.

    MathSciNet  MATH  Google Scholar 

  49. Peli, T., & Malah, D. (1982). A study of edge detection algorithms. Computer Graphics and Image Processing, 20(1), 1–21.

    Article  MATH  Google Scholar 

  50. Lopez-Molina, C., Ayala-Martini, D., Lopez-Maestresalas, A., & Bustince, H. (2017). Baddeley’s delta metric for local contrast computation in hyperspectral imagery. Progress in Artificial Intelligence, 6(2), 121–132.

    Article  Google Scholar 

  51. Begol, M., & Maghooli, K. (2011). Improving digital image edge detection by fuzzy systems. World Academy of Science, Engineering and Technology, 81, 76–79.

    Google Scholar 

  52. Mehrara, H., Zahedinejad, M., & Pourmohammad, A. (2009). Novel edge detection using BP neural network based on threshold binarization. In Second international conference on computer and electrical engineering, 2009. ICCEE'09. (Vol. 2, pp. 408–412). IEEE.

  53. Zhang, L., Xiao, M., Ma, J., & Song, H. (2009). Edge detection by adaptive neuro-fuzzy inference system. In 2nd international congress on image and signal processing, 2009. CISP'09. (pp. 1–4). IEEE.

  54. Mathur, S., & Ahlawat, A. (2008). Application of fuzzy logic on image edge detection. ISSN: 1313-0455

  55. Marmanis, D., Schindler, K., Wegner, J. D., Galliani, S., Datcu, M., & Stilla, U. (2018). Classification with an edge: Improving semantic image segmentation with boundary detection. ISPRS Journal of Photogrammetry and Remote Sensing, 135, 158–172.

    Article  Google Scholar 

  56. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/images.html.

  57. http://sipi.usc.edu/database/database.php.

  58. Flores-Vidal, P. A., Olaso, P., Gómez, D., & Guada, C. (2019). A new edge detection method based on global evaluation using fuzzy clustering. Soft Computing, 23(6), 1809–1821.

    Article  Google Scholar 

  59. Kumar, A., & Raheja, S. (2021). Edge detection in digital images using guided L0 smoothen filter and fuzzy logic. Wireless Personal Communications, 121, 1–19.

    Article  Google Scholar 

Download references

Funding

No.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Ranjan.

Ethics declarations

Conflict of interest

No.

Consent to participate

Yes.

Consent for publication

Yes.

Ethical approval

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R., Avasthi, V. Edge Detection Using Guided Sobel Image Filtering. Wireless Pers Commun 132, 651–677 (2023). https://doi.org/10.1007/s11277-023-10628-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10628-5

Keywords

Navigation