Skip to main content
Log in

Secrecy Outage Probability and Strictly Positive Secrecy Capacity of Cognitive Radio Networks with Adaptive Transmit Power

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this article, we derive the Secrecy Outage Probability (SOP) and the Probability of Strictly Positive Secrecy Capacity (SPSC) for Cognitive Radio Networks with Adaptive Transmit Power. Our analysis takes into consideration the interference between primary and secondary nodes. The Secondary Source \(S_S\) and relays \(R_k\) adapt their power to generate low interference at Primary Receiver (\(P_R\)). We derive the SOP and SPSC at the secondary destination in the presence of an eavesdropper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Data and material are not available.

References

  1. Fang, D., Qian, Y., & Hu, H. U. (2018). Security for 5G mobile wireless networks. IEEE Access, 6, 4850–4874.

    Article  Google Scholar 

  2. Bloch, M., & Barros, J. (2011). Physical-layer security: From information theory to security engineering. Cambridge University Press.

  3. Zhang, Y., Wang, H.-M., Yang, Q., et al. (2016). Secrecy sum rate maximization in non-orthogonal multiple access. IEEE Communications Letters, 20(5), 930–933.

    Article  Google Scholar 

  4. Zhijin, Q., Yuanwei, L., & Zhiguo, D., et al. (2016). Physical layer security for 5G non-orthogonal multiple access in large-scale networks. In 2016 IEEE international conference on communications (ICC) pp. 1–6. IEEE.

  5. Yuanwei, L., Zhijin, Q., Maged, E., et al. (2017). Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks. IEEE Transactions on Wireless Communications, 16(3), 1656–1672.

    Article  Google Scholar 

  6. He, B., Lv, L., Yang, L., & Chen, J. (2020). Enhancing secrecy for NOMA untrusted relay networks with user scheduling and jamming. IEEE Communications Letters, 24(12), 2682–2686.

    Article  Google Scholar 

  7. Thapar, S., Mishra, D., & Saini, R. (2020). Novel outage-aware NOMA protocol for secrecy fairness maximization among untrusted users. IEEE Transactions on Vehicular Technology, 69(11), 13259–13272.

    Article  Google Scholar 

  8. Webb, H., Yin, C., Nguyen, D. N., Le, T. T. N., Van Do, H., Van Hoang, D., & Van Nguyen, N. (2020). Secrecy outage analysis in energy harvesting relay networks with a friendly jammer. In 2020 4th international conference on recent advances in signal processing, telecommunications and computing (SigTelCom).

  9. Dang-Ngoc, H., Ho-Quoc, B., & Ho-Van, K. (2020) Key secrecy performance metrics of overlay networks with energy scavenging and artificial noise. In 4th International conference on recent advances in signal processing, telecommunications and computing (SigTelCom).

  10. Trinh, P. V., Carrasco-Casado, A., Pham, A. T., & Toyoshima, M. (2020). Secrecy analysis of FSO systems considering misalignments and eavesdropper’s location. IEEE Transactions on Communications, 68(12), 7810–7823.

    Article  Google Scholar 

  11. You, B., Lee, I. H., & Jung, H. (2020). Exact secrecy rate analysis of antenna subset modulation schemes. IEEE Systems Journal, 15(4), 4827–4830.

    Article  Google Scholar 

  12. Kumar, S., Garg, A., & Bhatnagar, M. R. (2020). Physical layer secrecy performance analysis of imperfect feedback based 4 1 MISO system. In International conference on signal processing and communications (SPCOM).

  13. Khojastehnia, M., & Loyka, S. (2020). Comments on Precoding for secrecy rate maximisation in cognitive MIMO wiretap channels. Electronics Letters, 56(17), 902–904.

    Article  Google Scholar 

  14. Li, C., He, J., Liu, S., Guo, D., & Song, L. (2020). On Secrecy key of a class of secure asymmetric multilevel diversity coding system. In 2020 IEEE international symposium on information theory (ISIT).

  15. Shkel, Y. Y., & Poor, H. V. (2020). A compression perspective on secrecy measures. In 2020 IEEE international symposium on information theory (ISIT).

  16. Khodeir, M. A., & Alrayahneh, W. S. (2022). Physical-layer security in underlay cognitive radio system with full-duplex secondary user over Nakagami-m fading channel. In 2022 13th International conference on information and communication systems (ICICS).

  17. Nguyen, P. X., Nguyen, H. V., Nguyen, V. D., & Shin, O. S. (2021) UAV-enabled cooperative jamming for physical layer security in cognitive radio network. In Autonomous airborne wireless networks.

  18. Krayani, A., Alam, A. S., Marcenaro, L., Nallanathan, A., & Regazzoni, C. (2022). An emergent self-awareness module for physical layer security in cognitive uav radios. IEEE Transactions on Cognitive Communications and Networking, 8(2), 888–906.

    Article  Google Scholar 

  19. Son, V. P., Nguyen, T. T., & Hai, N. T. (2021). Physical layer security in cooperative cognitive radio networks with relay selection methods. In 2021 International conference on advanced technologies for communications (ATC).

  20. Soni, B., Patel, D. K., Kavaiya, S., Hasna, M. O., & Lopez-Benitez, M. (2021). On Physical layer security of correlated multiantenna cognitive radio receivers. In 2021 National conference on communications (NCC).

  21. Hasna, M., & Alouini, M. S. (2003). End-to-end performance of transmission systems with relays over Rayleigh fading channels. IEEE Transactions on Wireless Communications, 2, 1126–1131.

    Article  Google Scholar 

  22. Hussain, S.I., Alouini, M.S., Qarage, K., & Hasna, M. (2012). Reactive relay selection in underlay cognitive networks with fixed gain relays. In IEEE international conference on commmunications pp. 1784–1788.

Download references

Funding

This publication was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

This article is the contribution of Prof. Faisal Alanazi.

Corresponding author

Correspondence to Faisal Alanazi.

Ethics declarations

conflict of interest

There is no conflict of interest for this paper.

code available

Software application and custom code are non available.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

We can write

$$\begin{aligned}{} & {} P\left( \frac{T|h_{SE}|^{2}}{|h_{SP_{{R}}}|^{2}N_{0}}<x||h_{SP_{{R}}}|^{2}>\frac{T}{E_{max}}\right) \nonumber \\{} & {} =P\left( |h_{SE}|^{2}<\frac{x|h_{SP_{{R}}}|^{2}N_{0} }{T}||h_{SP_{{R}}}|^{2}>\frac{T}{E_{max}}\right) \nonumber \\{} & {} =e^{\frac{T}{\beta _{SP_{{R}}}^{2}E_{max}}}\int _{\frac{T}{E_{max}} }^{+\infty }P\left( |h_{SE}|^{2}<\frac{xuN_{0}}{T}\right) \frac{e^{-\frac{u}{ \beta _{SP_{{R}}}^{2}}}}{\beta _{SP_{{R}}}^{2}}du \nonumber \\{} & {} =e^{\frac{T}{\beta _{SP_{{R}}}^{2}E_{max}}}\int _{\frac{T}{E_{max}} }^{+\infty }\left[ 1-e^{-\frac{xuN_{0}}{T\beta _{SE}^{2}}}\right] \frac{e^{- \frac{u}{\beta _{SP_{{R}}}^{2}}}}{\beta _{SP_{{R}}}^{2}}du \nonumber \\{} & {} =1-\frac{e^{-\frac{N_{0}x}{\beta _{SE}^{2}E_{max}}}}{1+\frac{\beta _{SP_{{R}}}^{2}xN_{0}}{T\beta _{SE}^{2}}} \end{aligned}$$
(22)

Appendix B

If \(\frac{T}{|h_{SP_R}|^2}>E_{max}\), the SINR at E is equal to

$$\begin{aligned} \Gamma _{E}=\frac{E_{max}|h_{SE}|^{2}}{E_{P_{T}}|h_{P_TE}|^{2}+N_{0}} \end{aligned}$$
(23)

The CDF of the SINR is equal to

$$\begin{aligned} F_{\Gamma _{E}}(x)=P(E_{max}|h_{SE}|^{2}<x (E_{P_{T}}|h_{P_TE}|^{2}+N_{0})) \end{aligned}$$
(24)

We deduce

$$\begin{aligned} F_{\Gamma _{E}}(x )=\, & {} P(E_{max}|h_{SE}|^{2}<x(N_{0}+E_{P_{T}}|h_{P_TE}|^{2})) \nonumber \\= & {} \int _{N_{0}}^{+\infty }F_{E_{max}|h_{SE}|^{2}}(x u)f_{E_{P_{T}}|h_{P_TE}|^{2}}(u-N_{0})du \end{aligned}$$
(25)

We have

$$\begin{aligned} F_{\Gamma _{E}}(x )=\, & {} \int _{N_{0}}^{+\infty }\left[ 1-e^{-\frac{ x u}{E_{max}\beta _{SE}^{2}}}\right] e^{-\frac{(u-N_{0})}{E_{P_T}\beta _{P_{T}E}^{2}}}\frac{1}{E_{P_T}\beta _{P_TE}^{2}}du \nonumber \\= & {} 1-\frac{E_{max}\beta _{SE}^{2}}{E_{max}\beta _{SE}^{2}+x E_{P_T}\beta _{P_TE}^{2}} e^{-\frac{N_{0}x }{E_{max}\beta _{SE}^{2}}} \end{aligned}$$
(26)

Appendix C

If \(\frac{T}{|h_{SP_R}|^2}<E_{max}\), the SINR at E is equal to

$$\begin{aligned} \Gamma _{E}=\frac{T|h_{SE}|^{2}}{|h_{SP_{R}}|^{2}(N_0+E_{P_{T}}|h_{P_TE}|^{2})} \end{aligned}$$
(27)

For Rayleigh channels, \(|h_{SE}|^{2}\),\(|h_{SP_{R}}|^{2}\) and \(|h_{P_TE}|^{2}\) have an exponential distribution with mean \(\beta _{i}=E(U_{i})\).

We have

$$\begin{aligned}{} & {} P\left( \Gamma _{E}<x|\frac{T}{|h_{SP_{R}}|^{2}}<E_{max}\right) =P\left( \Gamma _{E}<x||h_{SP_{R}}|^{2}>\frac{T}{E_{max}}\right) \nonumber \\{} & {} =P\left( T|h_{SE}|^{2}<x|h_{SP_{R}}|^{2}(N_0+E_{P_{T}}|h_{P_TE}|^{2})||h_{SP_{R}}|^{2}>\frac{T}{E_{max}} \right) \end{aligned}$$
(28)

Let \(U=N_0+E_{P_{T}}|h_{P_TE}|^{2}\). The CDF and PDF of U are equal to

$$\begin{aligned} F_{U}(w)= & {} F_{|h_{P_TE}|^{2}}\left( \frac{w-N_0}{E_{P_{T}}}\right) \end{aligned}$$
(29)
$$\begin{aligned} f_{U}(w)= & {} \frac{1}{E_{P_{T}}}f_{|h_{P_TE}|^{2}}\left( \frac{w-N_0}{E_{P_{T}}}\right) . \end{aligned}$$
(30)

Equation 28 can be expressed as

$$\begin{aligned}{} & {} P\left( T|h_{SE}|^{2}<x|h_{SP_{R}}|^{2}(N_0+E_{P_{T}}|h_{P_TE}|^{2})||h_{SP_{R}}|^{2}>\frac{T}{E_{max}}\right) \nonumber \\{} & {} =\int _{\frac{T}{E_{max}}}^{+\infty }\int _{N_0}^{+\infty }P(T|h_{SE}|^{2}<xvw)f_{|h_{SP_{R}}|^{2}||h_{SP_{R}}|^{2}>\frac{T}{E_{max}}}(v)f_{U}(w)dvdw\nonumber \\{} & {} =\int _{N_0}^{+\infty }\int _{\frac{T}{E_{max}}}^{+\infty }e^{\frac{T}{ E_{\max }\beta ^2_{SP_R}}}\left[ 1-e^{-\frac{xvw}{T\beta ^2_{SE}}}\right] \frac{e^{-\frac{v}{\beta ^2_{SP_R}}}}{\beta ^2_{SP_R}}dv\frac{e^{-\frac{(w-N_0)}{ E_{P_{T}}\beta ^2_{P_TE}}}}{E_{P_{T}}\beta ^2_{P_TE}}dw \end{aligned}$$
(31)

We have

$$\begin{aligned} \int _{\frac{T}{E_{max}}}^{+\infty }e^{\frac{T}{E_{\max }\beta ^2_{SP_R}}} \left[ 1-e^{-\frac{xvw}{T\beta ^2_{SE}}}\right] \frac{e^{-\frac{v}{ \beta ^2_{SP_R}}}}{\beta ^2_{SP_R}}dv=1-\frac{e^{-\frac{Txw}{E_{max}e_{1\beta ^2_{SE}}}}}{1+\frac{\beta ^2_{SP_R}xw}{\beta ^2_{SE}T}} \end{aligned}$$
(32)

Using (31) and (32), we deduce

$$\begin{aligned}{} & {} P\left( \Gamma _{E}<x|\frac{T}{|h_{SP_{R}}|^{2}}<E_{max}\right) =\int _{N_0}^{+\infty }\left[ 1-\frac{e^{-\frac{Txw}{E_{max}e_{1\beta ^2_{SE}}}}}{1+\frac{\beta ^2_{SP_R}xw}{\beta ^2_{SE}T}}\right] \frac{e^{-\frac{ (w-N_0)}{E_{P_{T}}\beta ^2_{P_TE}}}}{E_{P_{T}}\beta ^2_{P_TE}}dw\nonumber \\{} & {} =1-\frac{e^{\frac{N_0}{E_{P_{T}}\beta ^2_{P_TE}}}}{E_{P_{T}}\beta ^2_{P_TE}} \int _{N_0}^{+\infty }\frac{e^{-w\left( \frac{1}{E_{P_{T}}\beta ^2_{P_TE}}+\frac{xT }{E_{max}T\beta ^2_{SE}}\right) }}{1+\frac{\beta ^2_{SP_R}xw}{\beta ^2_{SE}T}}dw \end{aligned}$$
(33)

Let

$$\begin{aligned} z=1+\frac{\beta ^2_{SP_R}xw}{\beta ^2_{SE}T} \end{aligned}$$
(34)

We deduce

$$\begin{aligned}{} & {} P\left( \Gamma _{E}<x|\frac{T}{|h_{SP_{R}}|^{2}}<E_{max}\right) =1-\frac{ e^{\frac{N_0}{E_{P_{T}}\beta ^2_{P_TE}}}}{E_{P_{T}}\beta ^2_{P_TE}}\frac{\beta ^2_{SE}T}{\beta ^2_{SP_R}x}\nonumber \\{} & {} \qquad \times \int _{1+\frac{\beta ^2_{SP_R}xN_0}{\beta ^2_{SE}T} }^{+\infty }\frac{e^{-\left( z-1\right) \frac{\beta ^2_{SE}T}{\beta ^2_{SP_R}x}\left( \frac{1}{E_{P_{T}}\beta ^2_{P_TE}}+\frac{xT}{E_{max}T\beta ^2_{SE} }\right) }}{z}dz\nonumber \\{} & {} \quad =1-\frac{e^{\frac{N_0}{E_{P_{T}}\beta ^2_{P_TE}}}}{E_{P_{T}}\beta ^2_{P_TE}}\frac{ \beta ^2_{SE}T}{\beta ^2_{SP_R}x}e^\frac{\beta ^2_{SE}T}{E_{P_{T}} \beta ^2_{P_TE}\beta ^2_{SP_R}x}\nonumber \\{} & {} \qquad +\frac{T}{E_{max}\beta ^2_{SP_R}}\times E_{i}\left( \left( \frac{ \beta ^2_{SE}T}{\beta ^2_{SP_R}x}+N_0\right) \left( \frac{1}{E_{P_{T}}\beta ^2_{P_TE}}+\frac{xT}{E_{max}T\beta ^2_{SE}}\right) \right) \end{aligned}$$
(35)

where

$$\begin{aligned} E_{i}(x)=\int _{x}^{+\infty }\frac{e^{-t}}{t}dt. \end{aligned}$$
(36)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanazi, F. Secrecy Outage Probability and Strictly Positive Secrecy Capacity of Cognitive Radio Networks with Adaptive Transmit Power. Wireless Pers Commun 130, 609–624 (2023). https://doi.org/10.1007/s11277-023-10301-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10301-x

Keywords

Navigation