Skip to main content
Log in

Demystifying Cognitive Informatics and its Applications in Brain-Computer Interface

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive informatics is a transdisciplinary inquiry of data sciences, intellectual science, and knowledge science that explores the inward data preparing systems. It also explores the procedures of the brain and normal insight, just as their building applications in intellectual registering. Cognitive processing is a developing worldview of clever figuring strategies and frameworks dependent on intellectual informatics that executes computational insight through self-sufficient inductions. This article presents a lot of aggregate points of view on Cognitive informatics and intellectual figuring, just as their applications in unique insight, computational insight, computational phonetics, information portrayal, cooperative processing, granular registering, semantic registering, AI, and social processing. In this assessment paper, an endeavor has been made towards decoding an intellectual movement (conscious eye squint) of human subjects caught utilizing electroencephalography (EEG) energetically. A noteworthy ascent in occasion associated prospective remains seen through frontal flaps of the cerebral cortex. The created ideal has remained conveyed in Arduino utilizing Simulink towards control yield gadgets freely. The outcomes exhibit the achievability of the Cognitive mechanism system towards wards interpreting purposeful goals into orders through EEG centered BCI for the rest towards the ration of truly tested patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data and code availability

Data collection took place at the Meditation Research Institute (MRI) in Rishikesh, India, under the supervision of Arnaud Delorme, Ph.D. The project was approved by the local MRI Indian ethical committee and the ethical committee of the University of California San Diego (IRB project # 090,731). Code will be shared on the request of researcher.https://openneuro.org/datasets/ds003969/versions/1.0.0

References

  1. Abraham, A., & Windmann, S. (2007). Creative cognition: The diverse operations and the prospect of applying a cognitive neuroscience perspective. Methods, 42(1), 38–48. https://doi.org/10.1016/j.ymeth.2006.12.007

    Article  Google Scholar 

  2. Sahu, A., Sharma, S., & Raja, R. (2022). Deep learning-based continuous authentication for an IoT-enabled healthcare service. Computers and Electrical Engineering. https://doi.org/10.1016/j.compeleceng.2022

    Article  Google Scholar 

  3. Patel, V. L., Arocha, J. F., Diermeier, M., Greenes, R. A., & Shortliffe, E. H. (2001). Methods of cognitive analysis towards support the design and evaluation of biomedical systems: The case of clinical practice guidelines. Journal of Biomedical Informatics, 34(1), 52–66. https://doi.org/10.1006/jbin.2001.1002

    Article  Google Scholar 

  4. Patel, V. L., Arocha, J. F., Diermeier, M., How, J. J., & Mottur-Pilson, C. (2001). Cognitive psychological studies of representation and use of clinical practice guidelines. International Journal of Medical Informatics, 63(3), 147–167. https://doi.org/10.1016/S1386-5056(01)00165-4

    Article  Google Scholar 

  5. Patel, V. L., Yoskowitz, N. A., Arocha, J. F., & Shortliffe, E. H. (2009). Cognitive and learning sciences in biomedical and health instructional design: A review with lessons for biomedical informatics education. Journal of Biomedical Informatics, 42(1), 176–197. https://doi.org/10.1016/j.jbi.2008.12.002

    Article  Google Scholar 

  6. Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., Shanfield, K., Hayes-Jackson, S., Aisen, M., Heck, C., Liu, C., & Andersen, R. A. (2015). Decoding towards r imagery from the posterior parietal cortex of a tetraplegic human. Science, 348(6237), 906–910. https://doi.org/10.1126/science.aaa5417

    Article  Google Scholar 

  7. Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., McMorland, A. J. C., Velliste, M., Boninger, M. L., & Schwartz, A. B. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet, 381(9866), 557–564. https://doi.org/10.1016/S0140-6736(12)61816-9

    Article  Google Scholar 

  8. Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., Haddadin, S., Liu, J., Cash, S. S., Van Der Smagt, P., & Donoghue, J. P. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398), 372–375. https://doi.org/10.1038/nature11076

    Article  Google Scholar 

  9. King, C. E., Wang, P. T., McCrimmon, C. M., Chou, C. C., Do, A. H., & Nenadic, Z. (2015). The feasibility of a brain-computer interfaces functional electrical stimulation system for the rest towards the ration of overground walking after paraplegia. Journal of NeuroEngineering and Rehabilitation. https://doi.org/10.1186/s12984-015-0068-7

    Article  Google Scholar 

  10. Raja, R., Gupta, D., Varshney, N., & Kumar, A. (2022). Detection of behavioural patterns employing a hybrid approach of computational techniques. Computers, Materials and Continua, 72(1), 2015–2031.

    Article  Google Scholar 

  11. Hundia, R. (2015). Brain-computer interface-controlling devices utilizing the alpha brain waves. Undefined.

  12. Abdulkader, S. N., Atia, A., & Mostafa, M. S. M. (2015). Brain-computer interfacing: Applications and challenges. Egyptian Informatics Journal, 16(2), 213–230. https://doi.org/10.1016/j.eij.2015.06.002

    Article  Google Scholar 

  13. Bell, M. A., & Cuevas, K. (2012). Using EEG towards study cognitive development: issues and practices. Journal of Cognition and Development, 13(3), 281–294. https://doi.org/10.1080/15248372.2012.691143

    Article  Google Scholar 

  14. Nelson C. (2007). Methods for acquiring and analyzing infant event-related potentials. Retrieved August 15, 2020, from https://www.researchgate.net/publication/284222402_Methods_for_acquiring_and_analysing_infant_event-related_potentials

  15. Jatupaiboon, N., Pan-Ngum, S., & Israsena, P. (2013). Real-time EEG-based happiness detection system. The Scientific World Journal. https://doi.org/10.1155/2013/618649

    Article  Google Scholar 

  16. Karimifard, S., & Ahmadian, A. (2007). Morphological heart arrhythmia classification using the Hermitian model of higher-order statistics. Annual International Conference of the IEEE Engineering in Medicine and Biology—Proceedings, 3132–3135. https://doi.org/10.1109/IEMBS.2007.4352993

  17. Martis, R. J., Acharya, U. R., Mandana, K. M., Ray, A. K., & Chakraborty, C. (2013). Cardiac decision making using higher-order spectra. Biomedical Signal Processing and Control, 8(2), 193–203. https://doi.org/10.1016/j.bspc.2012.08.004

    Article  Google Scholar 

  18. Mahajan R. (2007). A real-time set up for retrieval of Emotional states from human neural responses. https://publications.waset.org/9997644/a-real-time-set-up-for-retrieval-of-emotional-states-from-human-neural-responses

  19. Sharma, P. C., Raja, R., Vishwakarma, S. K., Sharma, S., Mishra, P. K., & Kushwah, V. S. (2022). Analysis of brain signal processing and real-time EEG signal enhancement. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-022-12887-z

    Article  Google Scholar 

  20. Lelievre, Y., Washizawa, Y., & Rutkowski, T. M. (2013). Single-trial BCI classification accuracy improvement for the novel virtual sound movement-based spatial audio towards ry paradigm. 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2013. https://doi.org/10.1109/APSIPA.2013.6694317

  21. Wang, Q., Wang, H., Zhao, C., & Yang, J. (2011). Driver fatigue detection technology in active safety systems. 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2011—Proceedings, 3097–3100. https://doi.org/10.1109/RSETE.2011.5964969.

  22. Wang, W., Degenhart, A. D., Sudre, G. P., Pomerleau, D. A., & Tyler-Kabara, E. C. (2011). Decoding semantic information from human electrocorticographic (ECoG) signals. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2011, 6294–6298. https://doi.org/10.1109/IEMBS.2011.6091553

    Article  Google Scholar 

  23. Brumberg, J. S., Nietowards Castanon, A., Kennedy, P. R., & Guenther, F. H. (2010). Brain-computer interfaces for speech communication. Speech Communication, 52(4), 367–379. https://doi.org/10.1016/j.specom.2010.01.001

    Article  Google Scholar 

  24. Van De Laar, B., Gürkök, H., Plass-Oude Bos, D., Poel, M., & Nijholt, A. (2013). Experiencing BCI control in a popular computer game. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 176–184. https://doi.org/10.1109/TCIAIG.2013.2253778

    Article  Google Scholar 

  25. Vourvopoulos, A., & Liarokapis, F. (2012). Robot navigation using brain-computer interfaces. Proc. of the 11th IEEE Int. Conference on Trust, Security, and Privacy in Computing and Communications, TrustCom-2012—11th IEEE Int. Conference on Ubiquitowards us Computing and Communications, IUCC-2012, 1785–1792. https://doi.org/10.1109/TrustCom.2012.247

  26. Prataksita, N., Lin, Y. T., Chou, H. C., & Kuo, C. H. (2014). Brain-robot control interface: Development and application. 2014 IEEE International Symposium on Bioelectronics and Bioinformatics, IEEE ISBB 2014. https://doi.org/10.1109/ISBB.2014.6820928

  27. Brouwer, A.-M., van Erp, J., Heylen, D., Jensen, O., & Poel, M. (2013). Effortless Passive BCIs for Healthy Users. In LNCS (Vol. 8009, pp. 615–622). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39188-0_66

  28. Garcia-Molina, G., Tsoneva, T., & Nijholt, A. (2013). Emotional brain-computer interfaces. International Journal of Autowards enormous and Adaptive Communications Systems, 6(1), 9–25. https://doi.org/10.1504/IJAACS.2013.050687

    Article  Google Scholar 

  29. Tan, D., & Nijholt, A. (2010). Brain-Computer Interfaces and Human-Computer Interaction (pp. 3–19). Springer. https://doi.org/10.1007/978-1-84996-272-8_1

    Book  Google Scholar 

  30. Fukushima, M., Inoue, A., & Niwa, T. (2010). Emotional evaluation of TV-CM using the fractal dimension and the largest Lyapunov exponent. Conference Proceedings—IEEE International Conference on Systems, Man and Cybernetics, pp. 1473–1476. https://doi.org/10.1109/ICSMC.2010.5642336

  31. Sorudeykin, K. A. (2010). An Educative Brain-Computer Interface. http://arxiv.org/abs/1003.2660

  32. Venthur, B., Blankertz, B., Gugler, M. F., & Curio, G. (2010). Novel applications of BCI technology: Psychophysiological optimization of working conditions in the industry. Conference Proceedings—IEEE International Conference on Systems, Man and Cybernetics, pp. 417–421. https://doi.org/10.1109/ICSMC.2010.5641772.

  33. Hanafiah, Z. M., Taib, M. N., & Hamid, N. H. A. (2010). EEG pattern of smokers for Theta, Alpha, and Beta Band frequencies. Proceeding, 2010 IEEE Student Conference on Research and Development-Engineering: Innovation and Beyond, SCOReD 2010, pp. 320–323. https://doi.org/10.1109/SCORED.2010.5704025

  34. Padma Shri, T. K., & Sriraam, N. (2012). EEG based detection of alcoholics using spectral entropy with neural network classifiers. 2012 International Conference on Biomedical Engineering, ICoBE 2012, 89–93. https://doi.org/10.1109/ICoBE.2012.6178961

  35. Shooshtari, M. A., & Setarehdan, S. K. (2010). Selection of optimal EEG channels for classification of signals correlated with alcohol abusers. International Conference on Signal Processing Proceedings, ICSP, 1745–1748. https://doi.org/10.1109/ICOSP.2010.5656482

  36. Fan, X., Bi, L., & Wang, Z. (2012). Detecting emergencies by monitor ring drivers’ states from EEG. 2012 ICME International Conference on Complex Medical Engineering, CME 2012 Proceedings, pp. 245–248. https://doi.org/10.1109/ICCME.2012.6275717

  37. Lin, C. T., Tsai, S. F., & Ko, L. W. (2013). EEG-based learning system for online motion sickness level estimation in a dynamic vehicle environment. IEEE Transactions on Neural Networks and Learning Systems, 24(10), 1689–1700. https://doi.org/10.1109/TNNLS.2013.2275003

    Article  Google Scholar 

  38. Wei, C. S., Chuang, S. W., Wang, W. R., Ko, L. W., Jung, T. P., & Lin, C. T. (2011). Implementation of a motion sickness evaluation system based on EEG spectrum analysis. Proceedings—IEEE International Symposium on Circuits and Systems, 1081–1084. https://doi.org/10.1109/ISCAS.2011.5937757

  39. Paulraj, M. P., Bin Yaccob, S., Bin Adom, A. H., Hema, C. R., & Subramaniam, K. (2012). EEG based hearing perception level estimation for normal-hearing persons. Proceedings of 2012 IEEE Conference on Control, Systems and Industrial Informatics, ICCSII 2012, 160–162. https://doi.org/10.1109/CCSII.2012.6470493

  40. Ko, L. W., Lee, H. C., Tsai, S. F., Shih, T. C., Chuang, Y. T., Huang, H. L., Ho, S. Y., & Lin, C. T. (2013). EEG-based motion sickness classification system with genetic feature selection. Proceedings of the 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain, CCMB 2013–2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013, 158–164. https://doi.org/10.1109/CCMB.2013.6609180

  41. Bagchi, S., & Chattowards Upadhyay, M. (2012). An easy-towards -adopt the approach for regular and routine monitor ring of the consciousness level of the human brain of the stayed alone sick person. Proceedings of the International Conference on Sensing Technology, ICST, pp. 698–703. https://doi.org/10.1109/ICSensT.2012.6461767.

  42. Selvam, V. S., & Shenbagadevi, S. (2011). Brain tumor detection using scalp EEG with modified Wavelet-ICA and multi-layer feed-forward neural network. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 6104–6109. https://doi.org/10.1109/IEMBS.2011.6091508

  43. Sharanreddy, P. K. K. (2013). Detection of primary brain tumor present in EEG signal using wavelet transform and neural network.

  44. Poulos, M., Felekis, T., & Evangelou, A. (2012). Is it possible to extract a fingerprint for early breast cancer via EEG analysis? Medical Hypotheses, 78(6), 711–716. https://doi.org/10.1016/j.mehy.2012.02.016

    Article  Google Scholar 

  45. Sharanreddy, M., & Kulkarni, P. K. (2013). Autowards mated EEG signal analysis for the identification of epilepsy seizures and brain tumors. Journal of Medical Engineering and Technology, 37(8), 511–519. https://doi.org/10.3109/03091902.2013.837530

    Article  Google Scholar 

  46. Helini Kulasuriya, K. A., & Perera, M. U. S. (2011). Forecasting epileptic seizures using EEG signals, wavelet transform, and artificial neural networks. ITME 2011—Proceedings: 2011 IEEE International Symposium on IT in Medicine and Education, 1, 557–562. https://doi.org/10.1109/ITiME.2011.6130899

  47. Liang, S. F., Shaw, F. Z., Young, C. P., Chang, D. W., & Liao, Y. C. (2010). A closed-loop brain-computer interface for real-time seizure detection and control. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, 4950–4953. https://doi.org/10.1109/IEMBS.2010.5627243

  48. Fadzal, C. W. N. F. C. W., Mansor, W., & Khuan, L. Y. (2011). Review of brain-computer interface application in diagnosing dyslexia. Proceedings—2011 IEEE Control and System Graduate Research Colloquium, ICSGRC 2011, pp. 124–128. https://doi.org/10.1109/ICSGRC.2011.5991843

  49. Hansen, I. H., Marcussen, M., Christensen, J. A. E., Jennum, P., & Sorensen, H. B. D. (2013). Detection of a sleep disorder predicting Parkinson’s disease. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 5793–5796. https://doi.org/10.1109/EMBC.2013.6610868

  50. Koch, H., Christensen, J. A. E., Frandsen, R., Arvastson, L., Christensen, S. R., Sorensen, H. B. D., & Jennum, P. (2013). Classification of iRBD and Parkinson’s patients using a general data-driven sleep staging model built on EEG. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 4275–4278. https://doi.org/10.1109/EMBC.2013.6610490

  51. Wei, L., Hong, Q., Yue, H., & Xu, C. (2010). The research in a plantar pressure measuring system is connected with EEG. International Conference on Signal Processing Proceedings, ICSP, 434–437. https://doi.org/10.1109/ICOSP.2010.5655374

  52. Siang Ang, C., Sakel, M., Pepper, M., & Phillips, M. (2011). Use of brain-computer interfaces in neurological rehabilitation. British Journal of Neuroscience Nursing, 7(3), 523–528. https://doi.org/10.12968/bjnn.2011.7.3.523

    Article  Google Scholar 

  53. Tan, H. G., Kong, K. H., Shee, C. Y., Wang, C. C., Guan, C. T., & Ang, W. T. (2010). Post-acute stroke patients use a brain-computer interface to activate electrical stimulation. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, 4234–4237. https://doi.org/10.1109/IEMBS.2010.5627381

  54. Birbaumer, N., Ruiz, S., & Sitaram, R. (2013). Learned the regulation of brain metabolism. Trends in Cognitive Sciences, 17(6), 295–302. https://doi.org/10.1016/j.tics.2013.04.009

    Article  Google Scholar 

  55. Ruiz, S., Buyukturkoglu, K., Rana, M., Birbaumer, N., & Sitaram, R. (2014). Real-time fMRI brain-computer interfaces: Self-regulation of single brain regions towards networks. Biological Psychology, 95(1), 4–20. https://doi.org/10.1016/j.biopsycho.2013.04.010

    Article  Google Scholar 

  56. Barbosa, A. O. G., Achanccaray, D. R., & Meggiolaro, M. A. (2010). Activation of a mobile robot through a brain-computer interface. Proceedings—IEEE International Conference on Robotics and Autowards mation, pp. 4815–4821. https://doi.org/10.1109/ROBOT.2010.5509150

  57. Ang, K. K., Guan, C., Chua, K. S. G., Ang, B. T., Kuah, C., Wang, C., Phua, K. S., Zheng Chin, Y., & Zhang, H. (2010). Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, pp. 5549–5552. https://doi.org/10.1109/IEMBS.2010.5626782

  58. King, C. E., Wang, P. T., Mizuta, M., Reinkensmeyer, D. J., Do, A. H., Moromugi, S., & Nenadic, Z. (2011). Noninvasive brain-computer interface driven hand orthosis. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2011, 5786–5789. https://doi.org/10.1109/IEMBS.2011.6091432

    Article  Google Scholar 

  59. Meyer, T., Peters, J., Brtz, D., Zander, T. O., Scholkopf, B., Soekadar, S. R., & Grosse-Wentrup, M. (2012). A brain-robot interface for studying motor learning after stroke. IEEE International Conference on Intelligent Robots and Systems, pp. 4078–4083. https://doi.org/10.1109/IROS.2012.6385646

  60. Presacco, A., Forrester, L., & Contreras-Vidal, J. L. (2011). Towards wards a non-invasive brain-machine interface system towards rest towards re gait function in humans. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2011, 4588–4591. https://doi.org/10.1109/IEMBS.2011.6091136

    Article  Google Scholar 

  61. Contreras-Vidal, J. L., Presacco, A., Agashe, H., & Paek, A. (2012). Restowards ration of whole-body movement: Towards ward a noninvasive brain-machine interface system. IEEE Pulse, 3(1), 34–37. https://doi.org/10.1109/MPUL.2011.2175635

    Article  Google Scholar 

  62. Regenbrecht, H., Hoermann, S., Ott, C., Muller, L., & Franz, E. (2014). Manipulating the experience of reality for rehabilitation applications. Proceedings of the IEEE, 102(2), 170–184. https://doi.org/10.1109/JPROC.2013.2294178

    Article  Google Scholar 

  63. Benaim, C., Pérennou, D. A., Villy, J., Rousseaux, M., Pelissier, J. Y., Liepert, J., Breitenstein, C., Wang, Y. T., Kent, R. D., Duffy, J. R., Thomas, J. E., Tjaden, K., Watling, E., Lifshitz-Ben-Basat, A., Mashal, N., Monti, A., Ferrucci, R., Fumagalli, M., Mameli, F., Black, N., et al. (2016). Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training. Occupational Therapy International, 7(1), 310–320. https://doi.org/10.1002/oti.1422

    Article  Google Scholar 

  64. Tung, S. W., Guan, C., Ang, K. K., Phua, K. S., Wang, C., Zhao, L., Teo, W. P., & Chew, E. (2013). Motowards r imagery BCI for upper limb stroke rehabilitation: An evaluation of the EEG recordings using coherence analysis. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2013, 261–264. https://doi.org/10.1109/EMBC.2013.6609487

    Article  Google Scholar 

  65. Höller, Y., Bergmann, J., Kronbichler, M., Crone, J. S., Schmid, E. V., Thomschewski, A., Butz, K., Schütze, V., Höller, P., & Trinka, E. (2013). Real movement vs. motowards r imagery in healthy subjects. International Journal of Psychophysiology, 87(1), 35–41. https://doi.org/10.1016/j.ijpsycho.2012.10.015

    Article  Google Scholar 

  66. Kang, H., Park, W., Kang, J. H., Kwon, G. H., Kim, S. P., & Kim, L. (2012). A neural analysis of motor imagery and passive movement using a haptic device (pp. 1536–1541). https://hanyang.elsevierpure.com/en/publications/a-neural-analysis-on-motowardsr-imagery-and-passive-movement-using-a-h

  67. Domingo, M. C. (2012). An overview of the Internet of Things for people with disabilities. In Journal of Network and Computer Applications., 35(2), 584–596. https://doi.org/10.1016/j.jnca.2011.10.015

    Article  Google Scholar 

  68. Lin, C. T., Lin, B. S., Lin, F. C., & Chang, C. J. (2014). Brain-computer interface-based smart living environment towards—adjustment control system in UPnP home networking. IEEE Systems Journal, 8(2), 363–370. https://doi.org/10.1109/JSYST.2012.2192756

    Article  Google Scholar 

  69. Ou, C. Z., Lin, B. S., Chang, C. J., & Lin, C. T. (2012). Brain-computer interface-based smart environmental control system. Proceedings of the 2012 8th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2012, 281–284. https://doi.org/10.1109/IIH-MSP.2012.74

  70. Peng, H., Hu, B., Qi, Y., Zhao, Q., & Ratcliffe, M. (2011). An improved EEG de-noising approach in the electroencephalogram (EEG) for home care. 2011 5th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, PervasiveHealth 2011, 469–474. https://doi.org/10.4108/icst.pervasivehealth.2011.246021

  71. Roy, R. N., Bonnet, S., Charbonnier, S., & Campagne, A. (2013). Mental fatigue and working memory load estimation: Interaction and implications for EEG-based passive BCI. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2013, 6607–6610. https://doi.org/10.1109/EMBC.2013.6611070

    Article  Google Scholar 

  72. Duru, D. G., Duru, A. D., Barkana, D. E., Sanli, O., & Ozkan, M. (2013). Assessment of the surgeon’s stress level and alertness using EEG during laparoscopic simple nephrectomy. International IEEE/EMBS Conference on Neural Engineering, NER, pp. 452–455. https://doi.org/10.1109/NER.2013.6695969

  73. Dong, Y., Hu, Z., Uchimura, K., & Murayama, N. (2011). Driver inattention monitor ring system for intelligent vehicles: A review. IEEE Transactions on Intelligent Transportation Systems, 12(2), 596–614. https://doi.org/10.1109/TITS.2010.2092770

    Article  Google Scholar 

  74. Coetzer, R. C., & Hancke, G. P. (2009). Driver fatigue detection: A survey. IEEE AFRICAN Conference. https://doi.org/10.1109/AFRCON.2009.5308101

    Article  Google Scholar 

  75. Dahal, N., Nandagopal, N., Nafalski, A., & Nedic, Z. (2011). Modeling of cognition using EEG: A review and a new approach. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 1045–1049. https://doi.org/10.1109/TENCON.2011.6129270

  76. Pritchett, S., Zilberg, E., Xu, Z. M., Karrar, M., Burtowards n, D., & Lal, S. (2011). Comparing the accuracy of two algorithms for detecting driver drowsiness Single source (EEG) and hybrid (EEG and body movement). IB2COM 2011—6th International Conference on Broadband Communications and Biomedical Applications, Program, pp. 179–184. https://doi.org/10.1109/IB2Com.2011.6217916

  77. Borghini, G., Vecchiato, G., Toppi, J., Astolfi, L., Maglione, A., Isabella, R., Caltagirone, C., Kong, W., Wei, D., Zhou, Z., Polidori, L., Vitiello, S., & Babiloni, F. (2012). Assessment of mental fatigue during car driving by using high-resolution EEG activity and neurophysiologic indices. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2012, 6442–6445. https://doi.org/10.1109/EMBC.2012.6347469

  78. Lin, C. T., Wang, Y. K., & Chen, S. A. (2011). An EEG-based brain-computer interface for dual-task driving detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7062 LNCS(PART 1), 701–708. https://doi.org/10.1007/978-3-642-24955-6_83

  79. Shin, D., Kim, T., Kim, S., & Shin, D. (2011). Design and implementation of a smart driving system using a context recognition system. ISCI 2011–2011 IEEE Symposium on Computers and Informatics, pp. 84–89. https://doi.org/10.1109/ISCI.2011.5958889

  80. Murata, K., Fujita, E., Kojima, S., Maeda, S., Ogura, Y., Kamei, T., Tsuji, T., Kaneko, S., Yoshizumi, M., & Suzuki, N. (2011). Noninvasive biological sensor system for the detection of drunk driving. IEEE Transactions on Information Technology in Biomedicine, 15(1), 19–25. https://doi.org/10.1109/TITB.2010.2091646

    Article  Google Scholar 

  81. Liang, J., Xu, G., Ge, J., Zhu, F., & Feng, X. (2010). Analysis of virtual simulation environment for driving behavior based on imaging movements. 2010 International Conference on Networking and Digital Society, ICNDS 2010, 1, 246–248. https://doi.org/10.1109/ICNDS.2010.5479148

  82. Lin, C. T., Chen, S. A., Ko, L. W., & Wang, Y. K. (2011). EEG-based brain dynamics of driving distraction. Proceedings of the International Joint Conference on Neural Networks, pp. 1497–1500. https://doi.org/10.1109/IJCNN.2011.6033401

  83. Kawamura, R., Bhuiyan, M. S., Kawanaka, H., & Oguri, K. (2011). Simultaneous stimuli of vibration and audio for in-vehicle driver activation. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, pp. 1710–1715. https://doi.org/10.1109/ITSC.2011.6082947

  84. Yoshioka, M., Inoue, T., & Ozawa, J. (2012). Brain signal pattern of engrossed subjects using near-infrared spectroscopy (NIRS) and its application towards TV commercial evaluation. Proceedings of the International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN.2012.6252752

    Article  Google Scholar 

  85. Vecchiato, G., Babiloni, F., Asto lfi, L., Towards PPI, J., Cherubino, P., Dai, J., Kong, W., & Wei, D. (2011). Enhance of theta EEG spectral activity related to the memorization of commercial advertisings in Chinese and Italian subjects. Proceedings - 2011 4th International Conference on Biomedical Engineering and Informatics, BMEI 2011, 3, 1491–1494. https://doi.org/10.1109/BMEI.2011.6098615

  86. Johnstowardsn, S. J., Boehm, S. G., Healy, D., Goebel, R., & Linden, D. E. J. (2010). Neurofeedback: A promising towards ol for the self-regulation of emotion networks. NeuroImage, 49(1), 1066–1072. https://doi.org/10.1016/j.neuroimage.2009.07.056

    Article  Google Scholar 

  87. Zotev, V., Phillips, R., Yuan, H., Misaki, M., & Bodurka, J. (2014). Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback. NeuroImage, 85, 985–995. https://doi.org/10.1016/j.neuroimage.2013.04.126

    Article  Google Scholar 

  88. Márquez, B. Y., Alanis, A., Lopez, M. Á., & Magdaleno-Palencia, J. S. (2012). Sport education-based technology: Stress measurement incompetence. 2012 International Conference on E-Learning and E-Technologies in Education, ICEEE 2012, 247–252. https://doi.org/10.1109/ICeLeTE.2012.6333422

  89. Royer, A. S., Doud, A. J., Rose, M. L., & He, B. (2010). EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(6), 581–589. https://doi.org/10.1109/TNSRE.2010.2077654

    Article  Google Scholar 

  90. Bonnet, L., Lotte, F., & Lécuyer, A. (2013). Two brains, one game: Design and evaluation of a multiuser bci video game based on motor imagery. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 185–198. https://doi.org/10.1109/TCIAIG.2012.2237173

    Article  Google Scholar 

  91. Raja, R., Sharma, P. C., & Mahmood, R. (2022). Analysis of anomaly detection in surveillance video: recent trends and future vision. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-022-13954-1

    Article  Google Scholar 

  92. Svogor, I., & Kisasondi, T. (2012). Two-factor authentication using EEG augmented passwords. Proceedings of the International Conference on Information Technology Interfaces, ITI, 373–378. https://doi.org/10.2498/iti.2012.0441

  93. Karthikeyan, T., & Sabarigiri, B. (2011). Enhancement of Multi-Modal Biometric Authentication Based on IRIS and Brain NeuroImage Coding. Undefined.

  94. Revett, K., Deravi, F., & Sirlantzis, K. (2010). Biosignals for user authentication - Towards wards cognitive biometrics? Proceedings—EST 2010– 2010 International Conference on Emerging Security Technologies, ROBOSEC 2010—Robots and Security, LAB-RS 2010 - Learning and Adaptive Behavior in Robotic Systems, pp. 71–76. https://doi.org/10.1109/EST.2010.32

  95. Su, F., Zhou, H., Feng, Z., & Ma, J. (2012). A biometric-based covert warning system using EEG. Proceedings—2012 5th IAPR International Conference on Biometrics, ICB 2012, 342–347. https://doi.org/10.1109/ICB.2012.6199830

  96. Nakanishi, I., Baba, S., & Li, S. (2011). Evaluation of brain waves as biometrics for driver authentication using a simplified driving simulator. Proceedings—2011 International Conference on Biometrics and Kansei Engineering, ICBAKE 2011, 71–76. https://doi.org/10.1109/ICBAKE.2011.27

  97. Nakanishi, I., Baba, S., Ozaki, K., & Li, S. (2013). Using brain waves as transparent biometrics for on-demand driver authentication. International Journal of Biometrics, 5(3–4), 288–305. https://doi.org/10.1504/IJBM.2013.055965

    Article  Google Scholar 

  98. Nakanishi, I., Ozaki, K., & Li, S. (2012). Evaluation of the brain wave as biometrics in a simulated driving environment. Undefined.

  99. Real-time acquisition and analysis of neural response for rehabilitative control—Sujit Roy. (2020). Retrieved August 15, 2020, from http://sujitroy.co.in/publications/real-time-acquisition-and-analysis-of-neural-response-for-rehabilitative-control/

  100. The study of brain activity during the observation of commercial advertising by using high-resolution EEG techniques—Italian Ministry of Health. (2020). Retrieved August 15, 2020, from https://moh-it.pure.elsevier.com/en/publications/the-study-of-brain-activity-during-the-observation-of-commercial

Download references

Funding

The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Vishwakarma.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P.C., Raja, R., Vishwakarma, S.K. et al. Demystifying Cognitive Informatics and its Applications in Brain-Computer Interface. Wireless Pers Commun 129, 1343–1368 (2023). https://doi.org/10.1007/s11277-023-10192-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10192-y

Keywords

Navigation