Skip to main content

Advertisement

Log in

A Multi-Tier Data Prediction Mechanism for the Internet of Things Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this era, we need to make everything about us more smartly and communicating. Hence, the popularity of Internet of Thing (IoT) is increasing quickly across industries. In such networks, the sensors represent the eyes of the IoT that collect data about different environments and states, while the sink node forms the brain of the network that must analyze the collected data and take decisions. However, the big amount of data collected by the sensors leads, from one hand, to consume the limited energy of the sensor and, from another hand, to complicate the exploitation of the data at the sink for decision making. In this paper, we propose a multi-tier prediction mechanism in order to handle big data collected by sensor networks based on the clustering scheme. The prediction model uses the least squares approximation method which is applied at both tiers of each cluster: sensors and cluster-heads (CHs). At the first tier, each sensor applies the prediction model in order to send a reduced set of data to its appropriate CH; At the second tier, the CH combines data coming from sensors and provides a predictive model to the sink, representing data for all sensors of the cluster. Extensive simulations on real sensor data collected from several applications demonstrated that our mechanism can efficiently reduce the data transmission and save the network energy, while maintaining an acceptable data accuracy level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available in the: Intel repository, https://www.kaggle.com/datasets/divyansh22/intel-berkeley-research-lab-sensor-data, ARGO repository, https://argo.ucsd.edu/, and MIMIC repository, https://archive.physionet.org/mimic2/.

Code Availability

NA.

References

  1. Harb, H., Idrees, A. K., Jaber, A., Makhoul, A., Zahwe, O., & Taam, M. A. (2017). Wireless sensor networks: A big data source in internet of things. International Journal of Sensors Wireless Communications and Control, 7(2), 93–109.

    Google Scholar 

  2. Framingham, M. (2018). Idc forecasts worldwide technology spending on the internet of things to reach 1.2 trillion in 2022. In International Data Corporation (IDC).

  3. Harb, H., Baalbaki, H., Jaoude, C. A., & Jaber, A. (2021). Orchestration-based mechanism for sampling adaptation in sensing-based applications. IET Smart Cities, 3(3), 158–170.

    Article  Google Scholar 

  4. Harb, H., Mansour, A., Nasser, A., Cruz, E. M., & de la Torre Diez, I. (2020). A sensor-based data analytics for patient monitoring in connected healthcare applications. IEEE Sensors Journal, 21(2), 974–984.

    Article  Google Scholar 

  5. El Sayed, A., Harb, H., Ruiz, M., & Velasco, L. (2020). Zizo: A zoom-in zoom-out mechanism for minimizing redundancy and saving energy in wireless sensor networks. IEEE Sensors Journal, 21(3), 3452–3462.

    Article  Google Scholar 

  6. Saad, G., Harb, H., Abouaissa, A., Idoumghar, L., & Charara, N. (2020). P2d: An efficient patient-to-doctor framework for real-time health monitoring and decision making. IEEE Sensors Journal, 21(13), 14 240-14 252.

    Article  Google Scholar 

  7. Merabtine, N., Djenouri, D., Zegour, D.-E., Boumessaidia, B., & Boutahraoui, A. (2019). Balanced clustering approach with energy prediction and round-time adaptation in wireless sensor networks. International Journal of Communication Networks and Distributed Systems, 22(3), 245–274.

    Article  Google Scholar 

  8. Ranjan Swain, R., Mohan Khilar, P., & Dash, T. (2018). Fault diagnosis and its prediction in wireless sensor networks using regressional learning to achieve fault tolerance. International Journal of Communication Systems, 31(14), 1–17.

    Google Scholar 

  9. Idakwo Monday, A., Umoh, I., & Man-yahaya, S. (2017). Real time wireless sensor network for environmental data prediction and monitoring. International Journal of Scientific & Engineering Research, 8(1), 1522–1529.

    Google Scholar 

  10. Dias, G. M., Bellalta, B., & Oechsner, S. (2016). A survey about prediction-based data reduction in wireless sensor networks. ACM Computing Surveys (CSUR), 49(3), 58.

    Google Scholar 

  11. Wang, H., Ni, G., Chen, J., & Qu, J. (2020). Research on rolling bearing state health monitoring and life prediction based on pca and internet of things with multi-sensor. Measurement, 157, 107657.

    Article  Google Scholar 

  12. da Rosa Righi, R., Goldschmidt, G., Kunst, R., Deon, C., & da Costa, C. A. (2020). Towards combining data prediction and internet of things to manage milk production on dairy cows. Computers and Electronics in Agriculture, 169, 105156.

  13. Hosseinzadeh, M., Koohpayehzadeh, J., Bali, A. O., Asghari, P., Souri, A., Mazaherinezhad, A., Bohlouli, M., & Rawassizadeh, R. (2021). A diagnostic prediction model for chronic kidney disease in internet of things platform. Multimedia Tools and Applications, 80(11), 16 933-16 950.

    Article  Google Scholar 

  14. Li, N., Gebraeel, N., Lei, Y., Fang, X., Cai, X., & Yan, T. (2021). Remaining useful life prediction based on a multi-sensor data fusion model. Reliability Engineering & System Safety, 208, 107249.

    Article  Google Scholar 

  15. Salim, C., & Mitton, N. (2021). K-predictions based data reduction approach in wsn for smart agriculture. Computing, 103(3), 509–532.

    Article  Google Scholar 

  16. Jain, K., Agarwal, A., & Kumar, A. (2021). A novel data prediction technique based on correlation for data reduction in sensor networks. In Proceedings of international conference on artificial intelligence and applications, pp. 595–606. Springer.

  17. Russo, A., Verdier, F., & Miramond, B. (2018). Energy saving in a wireless sensor network by data prediction by using self-organized maps. Procedia Computer Science, 130, 1090–1095.

    Article  Google Scholar 

  18. Krishna, G., Singh, S. K., Singh, J. P., & Kumar, P. (2018). Energy conservation through data prediction in wireless sensor networks.

  19. Raza, U., Camerra, A., Murphy, A. L., Palpanas, T., & Picco, G. P. (2015). Practical data prediction for real-world wireless sensor networks. IEEE Transactions on Knowledge and Data Engineering, 27(8), 2231–2244.

    Article  Google Scholar 

  20. Bhandari, S., Bergmann, N., Jurdak, R., & Kusy, B. (2017). Time series data analysis of wireless sensor network measurements of temperature. Sensors, 17(6), 1221.

    Article  Google Scholar 

  21. Karjee, J., & Kleinsteuber, M. (2017). Data estimation with predictive switching mechanism in wireless sensor networks. International Journal of Sensor Networks, 25(3), 184–197.

    Article  Google Scholar 

  22. Tagliabue, L. C., Cecconi, F. R., Rinaldi, S., & Ciribini, A. L. C. (2021). Data driven indoor air quality prediction in educational facilities based on iot network. Energy and Buildings, 236, 110782.

    Article  Google Scholar 

  23. Bahi, J. M., Makhoul, A., & Medlej, M. (2014). A two tiers data aggregation scheme for periodic sensor networks. Ad Hoc & Sensor Wireless Networks, 21(1–2), 77–100.

    Google Scholar 

  24. Xu, Q., Akhtar, R., Zhang, X., & Wang, C. (2018). Cluster-based arithmetic coding for data provenance compression in wireless sensor networks Wireless Communications and Mobile Computing. https://doi.org/10.1155/2018/9576978

  25. Zeng, P., Pan, B., Choo, K.-K.R., & Liu, H. (2020). Mmda: Multidimensional and multidirectional data aggregation for edge computing-enhanced iot. Journal of Systems Architecture, 106, 101713.

    Article  Google Scholar 

  26. Zhang, J., Lin, Z., Tsai, P.-W., & Xu, L. (2020). Entropy-driven data aggregation method for energy-efficient wireless sensor networks. Information Fusion, 56, 103–113.

    Article  Google Scholar 

  27. Mamun, Q. (2012). A qualitative comparison of different logical topologies for wireless sensor networks. Sensors, 12(11), 14 887-14 913.

    Article  Google Scholar 

  28. Behera, T. M., Mohapatra, S. K., Samal, U. C., Khan, M. S., Daneshmand, M., & Gandomi, A. H. (2019). “Residual energy based cluster-head selection in wsns for iot application,” IEEE Internet of Things Journal, 6, 5132-5139.

    Article  Google Scholar 

  29. Biswas, S., Saha, J., Nag, T., Chowdhury, C., & Neogy, S. (2016). A novel cluster head selection algorithm for energy-efficient routing in wireless sensor network. In 2016 IEEE 6th international conference on advanced computing (IACC), pp. 588–593. IEEE.

  30. Priyadarshini, R. R., Sivakumar, N. (2018). “Cluster head selection based on minimum connected dominating set and bi-partite inspired methodology for energy conservation in wsns,” Journal of King Saud University-Computer and Information Sciences.

  31. Yousif, Y. K., Badlishah, R., Yaakob, N., Amir, A. (2018). An energy efficient and load balancing clustering scheme for wireless sensor network (wsn) based on distributed approach. Journal of Physics: Conference Series, vol. 1019(1), 012007.

    Google Scholar 

  32. Kang, S. (2019). Energy optimization in cluster-based routing protocols for large-area wireless sensor networks. Symmetry, 11(1), 37.

    Article  Google Scholar 

  33. Gupta, G. P. (2018). Improved cuckoo search-based clustering protocol for wireless sensor networks. Procedia Computer Science, 125, 234–240.

    Article  Google Scholar 

  34. Rais, A., Bouragba, K., & Ouzzif, M. (2019). Routing and clustering of sensor nodes in the honeycomb architecture. Journal of Computer Networks and Communications. https://doi.org/10.1155/2019/4861294

  35. Harb, H., Makhoul, A., Tawil, R., & Jaber, A. (2014) A suffix-based enhanced technique for data aggregation in periodic sensor networks. In International wireless communications and mobile computing conference (IWCMC), pp. 494–499. IEEE.

  36. Raj, B., Ahmedy, I., Idris, M. Y. I., & Md. Noor, R. (2022). A survey on cluster head selection and cluster formation methods in wireless sensor networks. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2022/5322649

  37. Bretscher, O. (1995). Linear algebra with applications. Prentice Hall.

    MATH  Google Scholar 

  38. Madden, S. (2004) Intel berkeley research lab data.

  39. Argo. (2019). Argo project, 2019.

  40. PhysioNet. (2000). The mimic and mimic ii databases on physionet.

  41. Sensorscope. (2007). Audiovisual communications lcav.

  42. Liang, Y., & Li, Y. (2014). An efficient and robust data compression algorithm in wireless sensor networks. IEEE Communications Letters, 18(3), 439–442.

    Article  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Harb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harb, H., Jaoude, C.A., Laiymani, D. et al. A Multi-Tier Data Prediction Mechanism for the Internet of Things Networks. Wireless Pers Commun 127, 3139–3172 (2022). https://doi.org/10.1007/s11277-022-09914-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09914-5

Keywords

Navigation