Skip to main content

Advertisement

Log in

Deep Learning Based Analog Beamforming Design for Millimetre Wave Massive MIMO System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Analog beamforming (ABF) architectures for both large-scale antennas at the base station (BS) and the small-scale antennas at the user side in millimetre wave (mmWave) channel are constructed and investigated in this paper with the aid of deep learning (DL) techniques. Transmit and receive beamformers are selected through offline training of the ABF network that accepts input as the channel. The joint optimization of both beamformers based on DL for maximization of spectral efficiency (SE) for massive multiple-input multiple-output (M-MIMO) system has been employed. This design procedure is carried out under imperfect channel state information (CSI) conditions and the proposed design of precoders and combiners shows robustness to imperfect CSI. The simulation results verify the superiority in terms of SE of deep neural network (DNN) enabled beamforming (BF) design of mmWave M-MIMO system compared with the conventional BF algorithms, while lessening the computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Venkateswaran, V., & Veen, A. V. D. (2010). Analog Beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Transactions on Signal Processing, 58(8), 4131–4143.

    Article  MathSciNet  MATH  Google Scholar 

  2. Giordani, M., Polese, M., Roy, A., Castor, D., & Zorzi, M. (2019). A tutorial on beam management for 3GPP NR at mmWave frequencies. IEEE Communications Surveys & Tutorials, 21(1), 173–196.

    MathSciNet  Google Scholar 

  3. Alkhateeb, A., Leus, G., & Heath, R. W. (2015). Limited Feedback hybrid precoding for multi-user millimeter wave systems. IEEE Transactions on Wireless Communications, 14(11), 6481–6494.

    Article  Google Scholar 

  4. Méndez-Rial, R., Rusu, C., González-Prelcic, N., Alkhateeb, A., & Heath, R. W. (2016). Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches? IEEE Access, 4, 247–267.

    Article  Google Scholar 

  5. Yu, X., Shen, J., Zhang, J., & Letaief, K. B. (2016). Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 485–500.

    Article  Google Scholar 

  6. Sohrabi, F., & Yu, W. (2017). Hybrid Analog and digital beamforming for mmWave OFDM large-scale antenna arrays. IEEE Journal on Selected Areas in Communications, 35(7), 1432–1443.

    Article  Google Scholar 

  7. Ioushua, S. S., & Eldar, Y. C. (2019). A family of hybrid analog-digital beamforming methods for massive MIMO systems. IEEE Transactions on Signal Processing, 67(12), 3243–3257.

    Article  MathSciNet  MATH  Google Scholar 

  8. Sayeed, A. M. (2002). Deconstructing multiantenna fading channels. IEEE Transactions on Signal Processing, 50(10), 2563–2579.

    Article  Google Scholar 

  9. Molisch, A. F., & Win, M. Z. (2004). MIMO systems with antenna selection. IEEE Microwave Magazine, 5(1), 46–56.

    Article  Google Scholar 

  10. Sanayei, S., & Nosratinia, A. (2004). Antenna selection in MIMO systems. IEEE Communications Magazine, 42(10), 68–73.

    Article  MATH  Google Scholar 

  11. Sanayei, S., & Nosratinia, A. (2007). Capacity of MIMO channels with antenna selection. IEEE Transactions on Information Theory, 53(11), 4356–4362.

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, X., Lv, Z., & Wang, W. (2008). performance analysis of multiuser diversity in MIMO systems with antenna selection. IEEE Transactions on Wireless Communications, 7(1), 15–21.

    Article  Google Scholar 

  13. Sayeed, A. M., & Raghavan, V. (2007). Maximizing MIMO capacity in sparse multipath with reconfigurable antenna arrays. IEEE Journal of Selected Topics in Signal Processing, 1(1), 156–166.

    Article  Google Scholar 

  14. Sayeed, A. & Behdad, N. (2010). “Continuous aperture phased MIMO: Basic theory and applications,” In 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Allerton, IL.

  15. Zeng, Y., & Zhang, R. (2016). Millimeter wave MIMO with lens antenna array: A new path division multiplexing paradigm. IEEE Transactions on Communications, 64(4), 1557–1571.

    Article  Google Scholar 

  16. Gao, X., Dai, L., & Sayeed, A. M. (2018). Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications. IEEE Communications Magazine, 56(4), 211–217.

    Article  Google Scholar 

  17. Ayach, O. E., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.

    Article  Google Scholar 

  18. Alkhateeb, A., Ayach, O. E., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846.

    Article  Google Scholar 

  19. He, H., Wen, C., Jin, S., & Li, G. Y. (2018). Deep learning-based channel estimation for beamspace mmWave massive MIMO systems. IEEE Wireless Communications Letters, 7(5), 852–855.

    Article  Google Scholar 

  20. Lin, T., Cong, J., Zhu, Y., Zhang, J., & Letaief, K. B. (2019). Hybrid beamforming for millimeter wave systems using the MMSE criterion. IEEE Transactions on Communications, 67(5), 3693–3708.

    Article  Google Scholar 

  21. Zhang, J., Yu, X., & Letaief, K. B. (2020). Hybrid beamforming for 5G and beyond millimeter-wave systems: A holistic view. IEEE Open Journal of the Communications Society, 1, 77–91.

    Article  Google Scholar 

  22. Huang, H., Song, Y., Yang, J., Gui, G., & Adachi, F. (2019). Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Transactions on Vehicular Technology, 68(3), 3027–3032.

    Article  Google Scholar 

  23. Alkhateeb, A., Alex, S., Varkey, P., Li, Y., Qu, Q., & Tujkovic, D. (2018). Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access, 6, 37328–37348.

    Article  Google Scholar 

  24. Tao, J., Wang, Q., Luo, S., & Chen, J. (2019) “Constrained deep neural network based hybrid beamforming for millimeter wave massive MIMO systems,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), Shanghai, China.

  25. X. Li and A. Alkhateeb, “Deep Learning for Direct Hybrid Precoding in Millimeter Wave Massive MIMO Systems,” in 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2019.

  26. Ye, H., Li, G. Y., & Juang, B. (2018). Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Communications Letters, 7(1), 114–117.

    Article  Google Scholar 

  27. Zhang, X., & Sun, S. (2019). Delay-aware packet scheduling for massive MIMO beamforming transmission using large-scale reinforcement learning. Physical Communication, 32, 81–87.

    Article  Google Scholar 

  28. Lin, T., & Zhu, Y. (2020). Beamforming design for large-scale antenna arrays using deep learning. IEEE Wireless Communications Letters, 9(1), 103–107.

    Article  MathSciNet  Google Scholar 

  29. Heath, R. W., González-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for Millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436–453.

    Article  Google Scholar 

  30. Busari, S. A., Huq, K. M. S., Mumtaz, S., Dai, L., & Rodriguez, J. (2018). Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Communications Surveys & Tutorials, 20(2), 836–869.

    Article  Google Scholar 

  31. Sayeed, A. M. & Behdad, N. (2011) “Continuous aperture phased MIMO: A new architecture for optimum line-of-sight links,” in 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA.

  32. Hogan, J. & Sayeed, A. (2016). “Beam selection for performance-complexity optimization in high-dimensional MIMO systems,” in 2016 Annual Conference on Information Science and Systems (CISS), Princeton, NJ.

  33. Wang, B., Dai, L., Wang, Z., Ge, N., & Zhou, S. (2017). Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE Journal on Selected Areas in Communications, 35(10), 2370–2382.

    Article  Google Scholar 

  34. Gao, X., Dai, L., Han, S., Chih-Lin, I., & Heath, R. W. (2016). Energy-efficient hybrid analog and digital precoding for MmWave MIMO systems with large antenna arrays. IEEE Journal on Selected Areas in Communications, 34(4), 998–1009.

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajdeep Singh Sohal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohal, R.S., Grewal, V., Kaur, J. et al. Deep Learning Based Analog Beamforming Design for Millimetre Wave Massive MIMO System. Wireless Pers Commun 126, 701–717 (2022). https://doi.org/10.1007/s11277-022-09766-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09766-z

Keywords

Navigation