Skip to main content
Log in

OQR-SC: An Optimal QoS Aware Routing Technique for Smart Cities Using IoT Enabled Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Internet of things (IoT) makes a machines optimization in everyday which processing the data by very intelligently and make communication more effectively and efficiently. In smart city environments, the data collection and communication play an important role in defining quality. Since the research period, it has been recommending a new data acquisition and data communication software framework for IoT smart applications. For further improvements, we recommend an optimal QoS aware routing technique for smart cities using IoT enabled wireless sensor networks (OQR-SC). In data gathering phase, the proposed system introduce chaotic bird swarm optimization (CBSO) algorithm for IoT sensor cluster formation; the improved differential search (IDS) algorithm used to estimate the faith degree of each sensor node, the highest trust node act as cluster head (CH). In data transferring phase, first illustrates lightweight signcryption technique for data encryption between two IoT sensors. Then, we use optimal decision making (ODM) algorithm to compute the optimal path between source–destination in IoT platform. Finally, the proposed OQR-SC technique is implemented using network simulation (NS2) tool and analyzes the performance of proposed technique with existing state-of-art techniques. The result summarizes that average energy consumption of proposed OQR-SC technique is 12.39% lower than the existing techniques; the average network lifetime of proposed OQR-SC technique is 15.96% higher than the existing techniques; the average delay of proposed OQR-SC technique is 21.08% lower than the existing techniques; and the average throughput of proposed OQR-SC technique is 17.89% higher than the existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The already existing algorithms data used to support the findings of this study have not been made available.

References

  1. Borah, S. J., Dhurandher, S. K., Woungang, I., & Kumar, V. (2017). A game theoretic context-based routing protocol for opportunistic networks in an IoT scenario. Computer Networks, 129, 572–584.

    Article  Google Scholar 

  2. Pan, M. S., & Yang, S. W. (2017). A lightweight and distributed geographic multicast routing protocol for IoT applications. Computer Networks, 112, 95–107.

    Article  Google Scholar 

  3. Fernandes, R. F., & Brandão, D. (2016). Proposal of Receiver Initiated MAC Protocol for WSN in urban environment using IoT. IFAC-PapersOnLine, 49(30), 102–107.

    Article  Google Scholar 

  4. Shende, D. K., & Sonavane, S. S. (2020). CrowWhale-ETR: CrowWhale optimization algorithm for energy and trust aware multicast routing in WSN for IoT applications. Wireless Networks, 26, 4011–4029.

    Article  Google Scholar 

  5. Kim, T. H., Ramos, C., & Mohammed, S. (2017). Smart city and IoT. Future Generation Computer System, 76, 159–162.

    Article  Google Scholar 

  6. Krishna, G. G., Krishna, G., & Bhalaji, N. (2016). Analysis of routing protocol for low-power and lossy networks in IoT real time applications. Procedia Computer Science, 87, 270–274.

    Article  Google Scholar 

  7. Kabilan, K., Bhalaji, N., Selvaraj, C., Kumaar, M., & Karthikeyan, P. T. R. (2018). Performance analysis of IoT protocol under different mobility models. Computers & Electrical Engineering, 72, 154–168.

    Article  Google Scholar 

  8. Elappila, M., Chinara, S., & Parhi, D. R. (2018). Survivable path routing in WSN for IoT applications. Pervasive and Mobile Computing, 43, 49–63.

    Article  Google Scholar 

  9. Han, Z., Li, Y., & Li, J. (2018). A novel routing algorithm for IoT cloud based on hash offset tree. Future Generation Computer Systems, 86, 456–463.

    Article  Google Scholar 

  10. Mujica, G., Portilla, J., & Riesgo, T. (2015). Performance evaluation of an AODV-based routing protocol implementation by using a novel in-field WSN diagnosis tool. Microprocessors and Microsystems, 39(8), 920–938.

    Article  Google Scholar 

  11. Thekkil, T. M., & Prabakaran, N. (2021). Optimization based multi-objective weighted clustering for remote monitoring system in WSN. Wireless Personal Communications, 117, 387–404.

    Article  Google Scholar 

  12. Jiang, W., Gu, C., & Wu, J. (2017). A quality-of-service evaluation method based on the cloud model for routing protocols in wireless sensor network. International Journal of Distributed Sensor Networks, 13(9), 1550147717731247.

    Article  Google Scholar 

  13. Chen, C. H., Lin, M. Y., & Guo, X. C. (2017). High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things. Computers & Electrical Engineering, 61, 48–66.

    Article  Google Scholar 

  14. Vigneshwari, S., & Devi, S. (2017). Fault diagnosis inWSN using optimized neighborhood hidden conditional random field. International Journal of Modern Trends in Engineering and Science, 4, 4–6.

    Google Scholar 

  15. Sharma, M., Joshi, S., Kannan, D., Govindan, K., Singh, R., & Purohit, H. C. (2020). Internet of Things (IoT) adoption barriers of smart cities’ waste management: An Indian context. Journal of Cleaner Production, 270, 122047.

    Article  Google Scholar 

  16. Meng, W., Li, W., Tug, S., & Tan, J. (2020). Towards blockchain-enabled single character frequency-based exclusive signature matching in IoT-assisted smart cities. Journal of Parallel and Distributed Computing, 144, 268–277.

    Article  Google Scholar 

  17. Saadeh, M., Sleit, A., Sabri, K. E., & Almobaideen, W. (2018). Hierarchical architecture and protocol for mobile object authentication in the context of IoT smart cities. Journal of Network and Computer Applications, 121, 1–19.

    Article  Google Scholar 

  18. Kothandaraman, D., Harshavardhan, A., Kumar, V.M., Sunitha, D. and Korra, S.N., 2021. BLE in IoT: Improved link stability and energy conservation using fuzzy approach for smart homes automation. Materials Today: Proceedings

  19. Sobral, J. V., Rodrigues, J. J. P., Rabêlo, R. A., Saleem, K., & Kozlov, S. A. (2019). Improving the performance of LOADng routing protocol in mobile IoT scenarios. IEEE Access, 7, 107032–107046.

    Article  Google Scholar 

  20. Zhu, M., Chang, L., Wang, N., & You, I. (2020). A smart collaborative routing protocol for delay sensitive applications in industrial IoT. IEEE Access, 8, 20413–20427.

    Article  Google Scholar 

  21. Haseeb, K., Islam, N., Almogren, A., Din, I. U., Almajed, H. N., & Guizani, N. (2019). Secret sharing-based energy-aware and multi-hop routing protocol for IoT based WSNs. IEEE Access, 7, 79980–79988.

    Article  Google Scholar 

  22. Selem, E., Fatehy, M., Abd El-Kader, S. M., & Nassar, H. (2019). THE (temperature heterogeneity energy) aware routing protocol for IoT health application. IEEE Access, 7, 108957–108968.

    Article  Google Scholar 

  23. Gopika, D. and Panjanathan, R., 2020. Energy efficient routing protocols for WSN based IoT applications: A review. Materials Today: Proceedings

  24. Conti, M., Kaliyar, P., Rabbani, M. M., & Ranise, S. (2020). Attestation-enabled secure and scalable routing protocol for IoT networks. Ad Hoc Networks, 98, 102054.

    Article  Google Scholar 

  25. Darabkh, K. A., Amro, O. M., Al-Zubi, R. T., & Salameh, H. B. (2021). Yet efficient routing protocols for half-and full-duplex cognitive radio Ad-Hoc networks over IoT environment. Journal of Network and Computer Applications, 173, 102836.

    Article  Google Scholar 

  26. Khan, I. U., Qureshi, I. M., Aziz, M. A., Cheema, T. A., & Shah, S. B. H. (2020). Smart IoT control-based nature inspired energy efficient routing protocol for flying ad hoc network (FANET). IEEE Access, 8, 56371–56378.

    Article  Google Scholar 

  27. Djedjig, N., Tandjaoui, D., Medjek, F., & Romdhani, I. (2020). Trust-aware and cooperative routing protocol for IoT security. Journal of Information Security and Applications, 52, 102467.

    Article  Google Scholar 

  28. Chithaluru, P., Al-Turjman, F., Kumar, M., & Stephan, T. (2020). I-AREOR: An energy-balanced clustering protocol for implementing green IoT in smart cities. Sustainable cities and society, 61, 102254.

    Article  Google Scholar 

  29. Vaiyapuri, T., Parvathy, V. S., Manikandan, V., Krishnaraj, N., Gupta, D., & Shankar, K. (2021). A novel hybrid optimization for cluster-based routing protocol in information-centric wireless sensor networks for IoT Based mobile edge computing. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08088-w

    Article  Google Scholar 

  30. Arul, R., Raja, G., Kottursamy, K., Sathiyanarayanan, P., & Venkatraman, S. (2017). User path prediction based key caching and authentication mechanism for broadband wireless networks. Wireless Personal Communications, 94(4), 2645–2664.

    Article  Google Scholar 

  31. Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. Journal of urban technology, 22(1), 3–21.

    Article  Google Scholar 

  32. Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., Ouzounis, G., & Portugali, Y. (2012). Smart cities of the future. The European Physical Journal Special Topics, 214(1), 481–518.

    Article  Google Scholar 

  33. Song, S., Qiu, X., Wang, J., & Meng, M. Q. H. (2017). Design and optimization strategy of sensor array layout for magnetic localization system. IEEE Sensors Journal, 17(6), 1849–1857.

    Article  Google Scholar 

  34. Komninos, N., Kakderi, C., Mora, L., Panori, A., & Sefertzi, E. (2021). Towards high impact smart cities: A universal architecture based on connected intelligence spaces. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-021-00767-0

    Article  Google Scholar 

Download references

Funding

There is no funding from any Research or Funding Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Karunkuzhali.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karunkuzhali, D., Meenakshi, B. & Lingam, K. OQR-SC: An Optimal QoS Aware Routing Technique for Smart Cities Using IoT Enabled Wireless Sensor Networks. Wireless Pers Commun 125, 3575–3602 (2022). https://doi.org/10.1007/s11277-022-09725-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09725-8

Keywords

Navigation