Skip to main content

Advertisement

Log in

Routing Algorithms for MANET-IoT Networks: A Comprehensive Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With the powerful evolution of wireless communication systems in recent years, mobile ad hoc networks (MANET) are more and more applied in many fields such as environment, energy efficiency, intelligent transport systems, smart agriculture, and IoT ecosystems, as well as expected to contribute role more and more important in the future Internet. However, due to the characteristic of the mobile ad hoc environment, the performance is dependent mainly on the deployed routing protocol and relative low. Therefore, routing protocols should be more flexible and intelligent to enhance network performance. This paper surveyed and analysed a series of recently proposed routing protocols for MANET-IoT networks. Results have shown that these protocols are classified into four main categories: performance improvement, quality of service (QoS-aware), energy-saving, and security-aware. Most protocols are evolved from these existing traditional protocols. Then, we compare the performance of the four traditional routing protocols under the different movement speeds of the network node aim determines the most stable routing protocol in smart cities environments. The experimental results showed that the proactive protocol work is good when the movement network nodes are low. However, the reactive protocols have more stable and high performance for high movement network scenarios. Thus, we confirm that the proposal of the routing protocols for MANET becomes more suitable based on improving the ad hoc on-demand distance vector routing protocol. This study is the premise for our further in-depth research on IoT ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abuashour, A., et al. (2017). Performance improvement of cluster-based routing protocol in VANET. IEEE Access, 5, 15354–15371. https://doi.org/10.1109/ACCESS.2017.2733380

    Article  Google Scholar 

  2. Accessed on: Feb. 12, 2022, [Online] Available: https://www.ietf.org/rfc/rfc3561

  3. Accessed on: Feb. 12, 2022, [Online] Available: https://www.ietf.org/rfc/rfc4728

  4. Accessed on: Feb. 12, 2022, [Online] Available: https://www.ietf.org/rfc/rfc3626

  5. Ahmad, M., Hameed, A., Ikram, A. A., & Wahid, I. (2019). State-of-the-art clustering schemes in mobile ad hoc networks: objectives, challenges, and future directions. IEEE Access, 7, 17067–17081. https://doi.org/10.1109/ACCESS.2018.2885120

    Article  Google Scholar 

  6. Akande, D. O., & Mohd Salleh, M. F. (2019). A network lifetime extension-aware cooperative MAC protocol for MANETs with optimized power control. IEEE Access, 7, 18546–18557. https://doi.org/10.1109/ACCESS.2019.2895342

    Article  Google Scholar 

  7. AlShahwan, F., Alshamrani, M., & Amer, A. A. (2018). Dynamic novel cross-layer performance enhancement approach for SIP over OLSR. IEEE Access, 6, 71947–71964. https://doi.org/10.1109/ACCESS.2018.2880917

    Article  Google Scholar 

  8. Chen, Y., Hu, C., Wu, E. H., Chuang, S., & Chen, G. (2018). A delay-sensitive multicast protocol for network capacity enhancement in multirate MANETs. IEEE Systems Journal, 12(1), 926–937. https://doi.org/10.1109/JSYST.2017.2677952

    Article  Google Scholar 

  9. Chen, Y., Wu, E. H., Lin, C., & Chen, G. (2018). Bandwidth-satisfied and coding-aware multicast protocol in MANETs. IEEE Transactions on Mobile Computing, 17(8), 1778–1790. https://doi.org/10.1109/TMC.2017.2778262

    Article  Google Scholar 

  10. Chen, Z., Zhou, W., Wu, S., & Cheng, L. (2020). An adaptive on-demand multipath routing protocol with QoS support for high-speed MANET. IEEE Access, 8, 44760–44773. https://doi.org/10.1109/ACCESS.2020.2978582

    Article  Google Scholar 

  11. Din, S., Qureshi, K. N., Afsar, M. S., Rodrigues, J. J. P. C., Ahmad, A., & Choi, G. S. (2020). Beaconless traffic-aware geographical routing protocol for intelligent transportation system. IEEE Access, 8, 187671–187686. https://doi.org/10.1109/ACCESS.2020.3030982

    Article  Google Scholar 

  12. Fan, B., He, Z., Tian, H., Kong, D., & Chen, Y. (2020). Energy-efficient resource allocation for dynamic priority-based vehicular mobile-health communications. IEEE Systems Journal, 14(2), 2097–2108. https://doi.org/10.1109/JSYST.2019.2919569

    Article  Google Scholar 

  13. Fatemidokht, H., Rafsanjani, M. K., Gupta, B. B., & Hsu, C.-H. (2021). Efficient and secure routing protocol based on artificial intelligence algorithms with UAV-assisted for vehicular ad hoc networks in intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.3041746

    Article  Google Scholar 

  14. Hatzivasilis, G., Papaefstathiou, I., & Manifavas, C. (2017). SCOTRES: secure routing for IoT and CPS. IEEE Internet of Things Journal, 4(6), 2129–2141. https://doi.org/10.1109/JIOT.2017.2752801

    Article  Google Scholar 

  15. Hurley-Smith, D., Wetherall, J., & Adekunle, A. (2017). SUPERMAN: security using pre-existing routing for mobile ad hoc networks. IEEE Transactions on Mobile Computing, 16(10), 2927–2940. https://doi.org/10.1109/TMC.2017.2649527

    Article  Google Scholar 

  16. Jabbar, W. A., Saad, W. K., & Ismail, M. (2018). MEQSA-OLSRv2: a multicriteria-based hybrid multipath protocol for energy-efficient and QoS-aware data routing in MANET-WSN convergence scenarios of IoT. IEEE Access, 6, 76546–76572. https://doi.org/10.1109/ACCESS.2018.2882853

    Article  Google Scholar 

  17. Kang, J. J., Yang, W., Dermody, G., Ghasemian, M., Adibi, S., & Haskell-Dowland, P. (2020). No soldiers left behind: an IoT-based low-power military mobile health system design. IEEE Access, 8, 201498–201515. https://doi.org/10.1109/ACCESS.2020.3035812

    Article  Google Scholar 

  18. Kao, Y.-W., Samani, H., Tasi, S.-C., Jalaian, B., Suri, N., & Lee, M. (2019). Intelligent search, rescue, and disaster recovery via internet of things. Global IoT Summit (GIoTS), 2019, 1–7. https://doi.org/10.1109/GIOTS.2019.8766391

    Article  Google Scholar 

  19. Khattak, H. A., Farman, H., Jan, B., & Din, I. U. (2019). Toward integrating vehicular clouds with IoT for smart city services. IEEE Network, 33(2), 65–71. https://doi.org/10.1109/MNET.2019.1800236

    Article  Google Scholar 

  20. Khudayer, B. H., Anbar, M., Hanshi, S. M., & Wan, T. (2020). Efficient route discovery and link failure detection mechanisms for source routing protocol in mobile ad-hoc networks. IEEE Access, 8, 24019–24032. https://doi.org/10.1109/ACCESS.2020.2970279

    Article  Google Scholar 

  21. Kim, N., Na, W., & Cho, S. (2020). Dual-channel-based mobile ad hoc network routing technique for indoor disaster environment. IEEE Access, 8, 126713–126724. https://doi.org/10.1109/ACCESS.2020.3008682

    Article  Google Scholar 

  22. Lin, D., Kang, J., Squicciarini, A., Wu, Y., Gurung, S., & Tonguz, O. (2017). MoZo: a moving zone based routing protocol using pure V2V communication in VANETs. IEEE Transactions on Mobile Computing, 16(5), 1357–1370. https://doi.org/10.1109/TMC.2016.2592915

    Article  Google Scholar 

  23. Liu, W., & Yu, M. (2014). AASR: authenticated anonymous secure routing for MANETs in adversarial environments. IEEE Transactions on Vehicular Technology, 63(9), 4585–4593. https://doi.org/10.1109/TVT.2014.2313180

    Article  Google Scholar 

  24. Luo, Q., & Wang, J. (2017). Multiple QoS parameters-based routing for civil aeronautical ad hoc networks. IEEE Internet of Things Journal, 4(3), 804–814. https://doi.org/10.1109/JIOT.2017.2669993

    Article  Google Scholar 

  25. Maddikunta, P. K. R., et al. (2021). Unmanned aerial vehicles in smart agriculture: applications, requirements, and challenges. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2021.3049471

    Article  Google Scholar 

  26. Mezher, M., & Igartua, M. A. (2017). Multimedia multimetric map-aware routing protocol to send video-reporting messages over VANETs in smart cities. IEEE Transactions on Vehicular Technology, 66(12), 10611–10625. https://doi.org/10.1109/TVT.2017.2715719

    Article  Google Scholar 

  27. Oubbati, O. S., Atiquzzaman, M., Lorenz, P., Tareque, M. H., & Hossain, M. S. (2019). Routing in flying ad hoc networks: survey, constraints, and future challenge perspectives. IEEE Access, 7, 81057–81105. https://doi.org/10.1109/ACCESS.2019.2923840

    Article  Google Scholar 

  28. Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. SIGCOMM Comput. Commun. Rev., 24(4), 234–244. https://doi.org/10.1145/190809.190336

    Article  Google Scholar 

  29. Quy, V. K., Ban, N. T., & Han, N. D. (2018). A high performance and longer lasting network lifetime routing protocol for MANETs. International Conference on Advanced Technologies for Communications (ATC), 2018, 237–241. https://doi.org/10.1109/ATC.2018.8587432

    Article  Google Scholar 

  30. Quy, V. K., Chuan, P. M., Nam, V. H., Linh, D. M., Ban, N. T., & Han, N. D. (2021). A high-performance routing protocol based on mobile agent for mobile ad hoc networks. International Journal of Interactive Mobile Technologies, 15(3), 30–42. https://doi.org/10.3991/ijim.v15i03.13007

    Article  Google Scholar 

  31. Quy, V. K., Hau, N. V., Anh, D. V., et al. (2021). Smart healthcare IoT applications based on fog computing: architecture, applications and challenges. Complex & Intelligent Systems. https://doi.org/10.1007/s40747-021-00582-9

    Article  Google Scholar 

  32. Quy, V. K., Nam, V. H., Linh, D. M., et al. (2022). Communication solutions for vehicle ad-hoc network in smart cities environment: a comprehensive survey. Wireless Personal Communications, 122(3), 2791–2815. https://doi.org/10.1007/s11277-021-09030-w

    Article  Google Scholar 

  33. Quy, V. K., Nam, V. H., Linh, D. M., Ngoc, L. A., & Gwanggil, J. (2022). Wireless communication technologies for IoT in 5G: vision, applications, and challenges. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2022/3229294

    Article  Google Scholar 

  34. Rayhana, R., & Xiao and Z. Liu, G. (2020). Internet of things empowered smart greenhouse farming. IEEE Journal of Radio Frequency Identification, 4(3), 195–211. https://doi.org/10.1109/JRFID.2020.2984391

    Article  Google Scholar 

  35. Rehman, S. U., Khan, M. A., Imran, M., Zia, T. A., & Iftikhar, M. (2017). Enhancing quality-of-service conditions using a cross-layer paradigm for ad-hoc vehicular communication. IEEE Access, 5, 12404–12416. https://doi.org/10.1109/ACCESS.2017.2717501

    Article  Google Scholar 

  36. Serhani, A., Naja, N., & Jamali, A. (2020). AQ-routing: mobility-, stability-aware adaptive routing protocol for data routing in MANET–IoT systems. Cluster Computing, 23(1), 13–27. https://doi.org/10.1007/s10586-019-02937-x

    Article  Google Scholar 

  37. Sivaram, M., Porkodi, V., Mohammed, A. S., Manikandan, V., & Yuvaraj, N. (2019). Retransmission DBTMA protocol with fast retransmission strategy to improve the performance of MANETs. IEEE Access, 7, 85098–85109. https://doi.org/10.1109/ACCESS.2019.2918723

    Article  Google Scholar 

  38. Srilakshmi, U., Veeraiah, N., Alotaibi, Y., Alghamdi, S. A., Khalaf, O. I., & Subbayamma, B. V. (2021). An improved hybrid secure multipath routing protocol for MANET. IEEE Access, 9, 163043–163053. https://doi.org/10.1109/ACCESS.2021.3133882

    Article  Google Scholar 

  39. Tahboush, M., & Agoyi, M. (2021). A hybrid wormhole attack detection in mobile ad-hoc network (MANET). IEEE Access, 9, 11872–11883. https://doi.org/10.1109/ACCESS.2021.3051491

    Article  Google Scholar 

  40. Tariq, A., Rehman, R., & Kim, B. (2020). Forwarding strategies in NDN-based wireless networks: a survey. IEEE Communications Surveys & Tutorials, 22(1), 68–95. https://doi.org/10.1109/COMST.2019.2935795

    Article  Google Scholar 

  41. Trotta, M., & L., Felice, M. D. and Bononi, L. (2020). A GPS-free flocking model for aerial mesh deployments in disaster-recovery scenarios. IEEE Access, 8, 91558–91573. https://doi.org/10.1109/ACCESS.2020.2994466

    Article  Google Scholar 

  42. Tu, J., Tian, D., & Wang, Y. (2021). An active-routing authentication scheme in MANET. IEEE Access, 9, 34276–34286. https://doi.org/10.1109/ACCESS.2021.3054891

    Article  Google Scholar 

  43. Veeraiah, N., et al. (2021). Trust aware secure energy efficient hybrid protocol for MANET. IEEE Access, 9, 120996–121005. https://doi.org/10.1109/ACCESS.2021.3108807

    Article  MathSciNet  Google Scholar 

  44. Wazid, M., Das, A. K., Shetty, S., & Jo, M. (2020). A tutorial and future research for building a blockchain-based secure communication scheme for internet of intelligent things. IEEE Access, 8, 88700–88716. https://doi.org/10.1109/ACCESS.2020.2992467

    Article  Google Scholar 

  45. Xie, J., & Murase, T. (2020). Multiple user cooperative mobility in mobile ad hoc networks: an interaction position game. IEEE Access, 8, 126297–126314. https://doi.org/10.1109/ACCESS.2020.3007931

    Article  Google Scholar 

  46. Xu, J., et al. (2020). Design of smart unstaffed retail shop based on IoT and artificial intelligence. IEEE Access, 8, 147728–147737. https://doi.org/10.1109/ACCESS.2020.3014047

    Article  Google Scholar 

  47. Xu, C., Xiong, Z., Kong, X., Zhao, G., & Yu, S. (2020). A packet reception probability-based reliable routing protocol for 3D VANET. IEEE Wireless Communications Letters, 9(4), 495–498. https://doi.org/10.1109/LWC.2019.2960236

    Article  Google Scholar 

  48. Zhang, D., et al. (2020). A multipath routing protocol based on link lifetime and energy consumption prediction for mobile edge computing. IEEE Access, 8, 69058–69071. https://doi.org/10.1109/ACCESS.2020.2986078

    Article  Google Scholar 

  49. Zhang, D.-G., et al. (2020). A multi-path routing protocol based on link lifetime and energy consumption prediction for mobile edge computing. IEEE Access, 8, 69058–69071. https://doi.org/10.1109/ACCESS.2020.2986078

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Hung Yen University of Technology and Education under grand number UTEHY.L.2022.06.

Author information

Authors and Affiliations

Authors

Contributions

Dr. V.K.Q has performed the study conception and deployment. Data collection and analysis were performed by V.K.Q, V.H.N, L.A.N and D.M.L. The first manuscript was written by V.K.Q. L.A.N and V.K.Q proofreading the final manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The author corresponding is V.K.Q.

Corresponding author

Correspondence to Vu Khanh Quy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 6.

Table 6 Acronyms used in the study and definitions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quy, V.K., Nam, V.H., Linh, D.M. et al. Routing Algorithms for MANET-IoT Networks: A Comprehensive Survey. Wireless Pers Commun 125, 3501–3525 (2022). https://doi.org/10.1007/s11277-022-09722-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09722-x

Keywords

Navigation