Skip to main content

Advertisement

Log in

Optimal Cluster Based Routing Technique for Wireless Sensor Networks using Hybrid Optimization Algorithm for Maximizing Life of Sensors

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless Sensor Network (WSN) has many sensor nodes that connect with sync nodes. The sensor node's power is a limitation. The expense and difficulty of battery charging and replacement affect sensor node life and network length. Clustering reduces the cost of internal cluster communication, thereby conserving energy. Generally, researchers seek for low energy usage via providing data to monitor the cluster's energy use. Many of them are tied to network length. The Ant Group (TAS) technique is the first notion for establishing a cluster using the OC algorithm that saves electricity. Next, we use improved myopia (IM) to find the cluster head (CH). This minimises the number of clusters and the expense of internal communications. The proposed OC-TAS-IM algorithm attempts to enhance energy efficiency. In the network. The route is also conducted using a special algorithm in the low energy adaptive cluster range (reach). It contains Network Simulator implementation and simulation experiments to test specific OC-TAS-IM algorithms (NS2). Because of optimum clustering, the OC-TAS-IM method is stable in terms of energy clustering and grid lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The already existing algorithms data used to support the findings of this study have not been made available.

References

  1. Sabato, C. N., & Fortino, G. (2017). Wireless MEMS-based accelerometer sensor boards for structural vibration monitoring: A Review. IEEE Sensors Journal, 17(2), 226–235.

    Article  Google Scholar 

  2. Kumar, M., Tripathi, R., & Tiwari, S. (2016). Critical data real-time routing in industrial wireless sensor networks. IET Wireless Sensor Systems, 6(4), 144–150.

    Article  Google Scholar 

  3. Huynh, N., Robu, V., Flynn, D., Rowland, S., & Coapes, G. (2017). Design and demonstration of a wireless sensor network platform for substation asset management. CIRED - Open Access Proceedings Journal, 2017(1), 105–108.

    Article  Google Scholar 

  4. Sarikaya, Y., Koksal, C., & Ercetin, O. (2016). Dynamic Network Control for Confidential Multi-Hop Communications. IEEE/ACM Transactions on Networking, 24(2), 1181–1195.

    Article  Google Scholar 

  5. Zhang, J., Song, G., Qiao, G., Meng, T., & Sun, H. (2011). An indoor security system with a jumping robot as the surveillance terminal. IEEE Transactions on Consumer Electronics, 57(4), 1774–1781.

    Article  Google Scholar 

  6. Jokhio, S., Jokhio, I., & Kemp, A. (2013). Light-weight framework for security-sensitive wireless sensor networks applications. IET Wireless Sensor Systems, 3(4), 298–306.

    Article  Google Scholar 

  7. Malatras, A., Asgari, A., & Bauge, T. (2008). Web enabled wireless sensor networks for facilities management. IEEE Systems Journal, 2(4), 500–512.

    Article  Google Scholar 

  8. Misra, S., Singh, A., Chatterjee, S., & Obaidat, M. (2016). Mils-cloud: A sensor-cloud-based architecture for the integration of military Tri-services operations and decision making. IEEE Systems Journal, 10(2), 628–636.

    Article  Google Scholar 

  9. Dey, N., Ashour, A., Shi, F., Fong, S., & Sherratt, R. (2017). Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Transactions on Consumer Electronics, 63(4), 442–449.

    Article  Google Scholar 

  10. Moraes and D. Har,. (2017). Charging distributed sensor nodes exploiting clustering and energy trading. IEEE Sensors Journal, 17(2), 546–555.

    Article  Google Scholar 

  11. Singh, S., Kumar, P., & Singh, J. (2017). A survey on successors of LEACH protocol. IEEE Access, 5, 4298–4328.

    Article  Google Scholar 

  12. Jun Zheng, Pu., & Wang and Cheng Li,. (2010). Distributed Data aggregation using slepian-wolf coding in cluster-based wireless sensor networks. IEEE Transactions on Vehicular Technology, 59(5), 2564–2574.

    Article  Google Scholar 

  13. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810.

    Article  Google Scholar 

  14. Muruganathan, S., Sesay, A., & Krzymien, W. (2010). Analytical query response time evaluation for a two-level clustering hierarchy based wireless sensor network routing protocol. IEEE Communications Letters, 14(5), 486–488.

    Article  Google Scholar 

  15. Gautam, N., & Pyun, J. (2010). Distance aware intelligent clustering protocol for wireless sensor networks. Journal of Communications and Networks, 12(2), 122–129.

    Article  Google Scholar 

  16. Ammari, H., & Das, S. (2012). Centralized and clustered k-coverage protocols for wireless sensor networks. IEEE Transactions on Computers, 61(1), 118–133.

    Article  MathSciNet  Google Scholar 

  17. Lee, J., & Cheng, W. (2012). Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication. IEEE Sensors Journal, 12(9), 2891–2897.

    Article  Google Scholar 

  18. Li, X., Zhou, F., & Du, J. (2013). LDTS: A lightweight and dependable trust system for clustered wireless sensor networks. IEEE Transactions on Information Forensics and Security, 8(6), 924–935.

    Article  Google Scholar 

  19. Hoang, R. K., & Panda, S. (2013). Realisation of a cluster-based protocol using fuzzy C-means algorithm for wireless sensor networks. IET Wireless Sensor Systems, 3(3), 163–171.

    Article  Google Scholar 

  20. Alia, O. (2017). A dynamic harmony search-based fuzzy clustering protocol for energy-efficient wireless sensor networks. Annals of Telecommunications, 73, 353–365.

    Article  Google Scholar 

  21. Hoang, P., Yadav, R. K., & Panda, S. (2014). Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.

    Article  Google Scholar 

  22. Lin, H., Wang, L., & Kong, R. (2015). Energy efficient clustering protocol for large-scale sensor networks. IEEE Sensors Journal, 15(12), 7150–7160.

    Article  Google Scholar 

  23. Lee, J., & Kao, T. (2016). An improved three-layer low-energy adaptive clustering hierarchy for wireless sensor networks. IEEE Internet of Things Journal, 3(6), 951–958.

    Article  Google Scholar 

  24. Wang, X., Zhang, X., & Chen, G. (2011). Delay-constrained and energy-efficient cross-layer routing in wireless sensor networks. Journal of Software, 22(7), 1626–1640.

    Article  Google Scholar 

  25. Akila and R. Venkatesan,. (2016). A fuzzy based energy-aware clustering architecture for cooperative communication in WSN. The Computer Journal, 59(10), 1551–1562.

    Article  Google Scholar 

  26. Zhou, Y., Wang, N., & Xiang, W. (2017). Clustering hierarchy protocol in wireless sensor networks using an improved PSO algorithm. IEEE Access, 5, 2241–2253.

    Article  Google Scholar 

  27. Wu, W., Xiong, N., & Wu, C. (2017). Improved clustering algorithm based on energy consumption in wireless sensor networks. IET Networks, 6(3), 47–53.

    Article  Google Scholar 

  28. Sasirekha, S., & Swamynathan, S. (2017). Cluster-chain mobile agent routing algorithm for efficient data aggregation in wireless sensor network. Journal of Communications and Networks, 19(4), 392–401.

    Article  Google Scholar 

  29. Bahbahani, M., & Alsusa, E. (2018). A cooperative clustering protocol with duty cycling for energy harvesting enabled wireless sensor networks. IEEE Transactions on Wireless Communications, 17(1), 101–111.

    Article  Google Scholar 

  30. O. Deepa and J. Suguna (2017) An optimized QoS-based clustering with multipath routing protocol for Wireless Sensor Networks. Journal of King Saud University - Computer and Information Sciences

  31. Tsai, C., Chang, W., Hu, K., & Chiang, M. (2017). An improved hyper-heuristic clustering algorithm for wireless sensor networks. Mobile Networks and Applications, 22(5), 943–958.

    Article  Google Scholar 

  32. Pessoa, C., Ranzan, C., Trierweiler, L., & Trierweiler, J. (2015). Development of ant colony optimization (ACO) algorithms based on statistical analysis and hypothesis testing for variable selection. IFAC-PapersOnLine, 48(8), 900–905.

    Article  Google Scholar 

  33. Karimzadeh-Farshbafan, M., & Ashtiani, F. (2018). Semi-myopic algorithm for resource allocation in wireless body area networks. IET Wireless Sensor Systems, 8(1), 26–35.

    Article  Google Scholar 

  34. Begambre, O., & Laier, J. (2009). A hybrid particle swarm optimization – simplex algorithm (PSOS) for structural damage identification. Advances in Engineering Software, 40(9), 883–891.

    Article  Google Scholar 

  35. T. Issariyakul and E. Hossain, "Introduction to Network Simulator NS2", 2012.

Download references

Funding

There is no funding from any Research or Funding Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumar.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukumar, S., Rajesh, D.H. Optimal Cluster Based Routing Technique for Wireless Sensor Networks using Hybrid Optimization Algorithm for Maximizing Life of Sensors. Wireless Pers Commun 125, 3479–3500 (2022). https://doi.org/10.1007/s11277-022-09721-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09721-y

Keywords

Navigation