Skip to main content
Log in

An Effective GPGPU Visual Secret Sharing by Contrast-Adaptive ConvNet Super-Resolution

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose an effective secret image sharing model with super-resolution utilizing a Contrast-adaptive Convolution Neural Network (CCNN or CConvNet). The two stages of this model are the share generation and secret image reconstruction. The share generation step generates information embedded shadows (shares) equal to the number of participants. The activities involved in the share generation are to create a halftone image, create shadows, and transforming the image to the wavelet domain using Discrete Wavelet Transformation (DWT) to embed information into the shadows. The reconstruction stage is the inverse of the share generation supplemented with CCNN to improve the reconstructed image’s quality. This work is significant as it exploits the computational power of the General-Purpose Graphics Processing Unit (GPGPU) to perform the operations. The extensive use of memory optimization using GPGPU-constant memory in all the activities brings uniqueness and efficiency to the proposed model. The contrast-adaptive normalization between the CCNN layers in improving the quality during super-resolution impart novelty to our investigation. The objective quality assessment proved that the proposed model produces a high-quality reconstructed image with the SSIM of \((89-99.8\%)\) for the noise-like shares and \((71.6-90\%)\) for the meaningful shares. The proposed technique achieved a speedup of \(800 \times\) in comparison with the sequential model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability (data transparency)

Available.

Code Availability (software application or custom code)

Available.

References

  1. SIPI Image Database (1999)(Accessed August 23, 2020). sipi.usc.edu/database/database.php?volume=misc?

  2. Al-Khalid, R. I., Al-Dallah, R. A., Al-Anani, A. M., Barham, R. M., Hajir, S. I., et al. (2017). A secure visual cryptography scheme using private key with invariant share sizes. Journal of Software Engineering and Applications, 10(01), 1.

    Article  Google Scholar 

  3. Athar, S., & Wang, Z. (2019). A comprehensive performance evaluation of image quality assessment algorithms. Ieee Access, 7, 140030–140070.

    Article  Google Scholar 

  4. Bao, C., & Zhang, S. (2020). Algorithm-based fault tolerance for discrete wavelet transform implemented on gpust1. Journal of Systems Architecture 101823.

  5. Bassirian, R., Boreiri, S., & Karimipour, V. (2019). Computing on quantum shared secrets for general quantum access structures. Quantum Information Processing, 18(4), 109.

    Article  MathSciNet  Google Scholar 

  6. Floyd, R.W. (1976). An adaptive algorithm for spatial gray-scale. In: Proc. Soc. Inf. Disp., vol. 17, pp. 75–77.

  7. Georgis, G., Lentaris, G., & Reisis, D. (2019). Acceleration techniques and evaluation on multi-core cpu, gpu and fpga for image processing and super-resolution. Journal of Real-Time Image Processing, 16(4), 1207–1234.

    Article  Google Scholar 

  8. Hou, Y. C., Quan, Z. Y., Tsai, C. F., & Tseng, A. Y. (2013). Block-based progressive visual secret sharing. Information Sciences, 233, 290–304.

    Article  Google Scholar 

  9. Huang, B. Y., & Juan, J. S. T. (2020). Flexible meaningful visual multi-secret sharing scheme by random grids. Multimedia Tools and Applications, 1, 1–25.

    Google Scholar 

  10. Jung, C., Ke, P., Sun, Z., & Gu, A. (2018). A fast deconvolution-based approach for single-image super-resolution with gpu acceleration. Journal of Real-Time Image Processing, 14(2), 501–512.

    Article  Google Scholar 

  11. Kafri, O., & Keren, E. (1987). Encryption of pictures and shapes by random grids. Optics letters, 12(6), 377–379.

    Article  Google Scholar 

  12. Li, P., Ma, J., Yin, L., & Ma, Q. (2020). A construction method of (2, 3) visual cryptography scheme. IEEE Access, 8, 32840–32849.

    Article  Google Scholar 

  13. Li, P., Yin, L., & Ma, J. (2020). Visual cryptography scheme with essential participants. Mathematics, 8(5), 838.

    Article  Google Scholar 

  14. Liu, F., Wu, C., Qian, L., et al. (2012). Improving the visual quality of size invariant visual cryptography scheme. Journal of Visual Communication and Image Representation, 23(2), 331–342.

    Article  Google Scholar 

  15. Liu, F., Yan, W. Q., Li, P., & Wu, C. (2014). Essvcs: An enriched secret sharing visual cryptography. In: Transactions on Data Hiding and Multimedia Security IX, pp. 1–24. Springer

  16. Liu, W., Yin, X., Lu, W., Zhang, J., Zeng, J., Shi, S., & Mao, M. (2020). Secure halftone image steganography with minimizing the distortion on pair swapping. Signal Processing, 167, 107287.

    Article  Google Scholar 

  17. Liu, Y. X., Sun, Q. D., & Yang, C. N. (2018). (k, n) secret image sharing scheme capable of cheating detection. EURASIP Journal on Wireless Communications and Networking, 2018(1), 72.

    Article  Google Scholar 

  18. Martin, D., Fowlkes, C., Tal, D., Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 416–423. IEEE.

  19. Mhala, N. C., Jamal, R., & Pais, A. R. (2017). Randomised visual secret sharing scheme for grey-scale and colour images. IET Image Processing, 12(3), 422–431.

    Article  Google Scholar 

  20. Mhala, N. C., & Pais, A. R. (2019). Contrast enhancement of progressive visual secret sharing (pvss) scheme for gray-scale and color images using super-resolution. Signal Processing, 162, 253–267.

    Article  Google Scholar 

  21. Mittal, S., & Vaishay, S. (2019). A survey of techniques for optimizing deep learning on gpus. Journal of Systems Architecture, 99, 101635.

    Article  Google Scholar 

  22. Moustafa, M., Ebeid, H. M., Helmy, A., Nazmy, T. M., & Tolba, M. F. (2016). Rapid real-time generation of super-resolution hyperspectral images through compressive sensing and gpu. International Journal of Remote Sensing, 37(18), 4201–4224.

    Article  Google Scholar 

  23. Naor, M., Shamir, A. (1994). Visual cryptography. In: Workshop on the Theory and Application of of Cryptographic Techniques, pp. 1–12. Springer.

  24. Pandey, D., Rawat, U., Rathore, N. K., Pandey, K., & Shukla, P. K. (2020). Distributed biomedical scheme for controlled recovery of medical encrypted images. IRBM

  25. Qiu, D., Zhang, S., Liu, Y., Zhu, J., & Zheng, L. (2020). Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning. Computer methods and programs in biomedicine, 187, 105059.

    Article  Google Scholar 

  26. Sridhar, S., & Sudha, G. F. (2020). Quality improved (k, n) priority based progressive visual secret sharing. Multimedia Tools and Applications, 1, 1–28.

    Google Scholar 

  27. Srividhya, S., Jayasree, J., & Sudha, G. F. (2019). Error diffusion with varying threshold halftoning for enhancing contrast of color images. In: Innovations in Computer Science and Engineering, pp. 289–298. Springer.

  28. Srujana, O. S., Mhala, N. C., & Pais, A. R. (2020). Secure transmission of hyperspectral images. In: 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP), pp. 94–99. IEEE.

  29. Wu, K., Inoue, K., & Hara, K. (2020). Neugebauer models for color error diffusion halftoning. Journal of Imaging, 6(4), 23.

    Article  Google Scholar 

  30. Wu, X., & Yang, C. N. (2020). Probabilistic color visual cryptography schemes for black and white secret images. Journal of Visual Communication and Image Representation 102793.

  31. Xiong, L., Zhong, X., Yang, C.N.: Dwt-sisa: a secure and effective discrete wavelet transform-based secret image sharing with authentication. Signal Processing p. 107571 (2020)

  32. Yamanaka, J., Kuwashima, S., & Kurita, T. (2017). Fast and accurate image super resolution by deep cnn with skip connection and network in network. In: International Conference on Neural Information Processing, pp. 217–225. Springer

  33. Yan, B., Xiang, Y., & Hua, G. (2020). Improving image quality in visual cryptography. Springer.

  34. Yan, X., Lu, Y., & Liu, L. (2020). A common general access structure construction approach in secret image sharing. International Journal of Digital Crime and Forensics (IJDCF), 12(3), 96–110.

    Article  Google Scholar 

  35. Yan, X., Lu, Y., Liu, L., Wan, S., Ding, W., Liu, H. (2020). Exploiting the homomorphic property of visual cryptography. In: Cryptography: Breakthroughs in Research and Practice, pp. 416–427. IGI Global.

  36. Yang, A., Yang, B., Ji, Z., Pang, Y., & Shao, L. (2020). Lightweight group convolutional network for single image super-resolution. Information Sciences, 516, 220–233.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The work is carried out by the first author under the guidance of the second author.

Corresponding author

Correspondence to M. Raviraja Holla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holla, M.R., Pais, A.R. An Effective GPGPU Visual Secret Sharing by Contrast-Adaptive ConvNet Super-Resolution. Wireless Pers Commun 123, 2367–2391 (2022). https://doi.org/10.1007/s11277-021-09245-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09245-x

Keywords

Navigation