Skip to main content
Log in

Duty Cycle Optimization Using Game Theory Two Master Nodes Cooperative Protocol in WBAN

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless body area networks (WBANs) are communication networks of sensors (and/or actuators), which can be placed on, inside, or around the body and represent a new generation of personal area networks. In contrast to the typical wireless sensor networks (WSNs), WBAN sensors are tiny and have limited power supply. Due to irregular human body movement and WBAN sensor distribution, fading can cause a lot of error, which can be determined by measuring the bit error rate (BER). A higher BER requires more power. Therefore, to reduce BER, power consumption (PC) and duty cycle (DC), a game theory-two master nodes-based cooperative protocol (GT-TMNCP) is proposed in this work. DC is enhanced by a further 13% using the proposed GT-TMNCP, leading to a BER reduction 3 times greater when compared to TMNCP, and PC improved by 14%, lower than with the TMNCP, for shadowing at 5 dB, critical index data (IC), IC = 3 and 5, representing maximum critical data. The results also demonstrate that BER is reduced up to 8 times, DC is enhanced by 8%, and PC by 7% for shadowing 9 dB, IC = 7, compared to the QoS optimisation approach and TMNCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Material (Data Transparency)

Not applicable.

Code Availability (Software Application or Custom Code)

Not applicable.

References

  1. Khan, R. A., & Pathan, A. S. K. (2018). The state-of-the-art wireless body area sensor networks: A survey. International Journal of Distributed Sensor Networks. https://doi.org/10.1177/1550147718768994

    Article  Google Scholar 

  2. Al-Mishmish, H., Akhayyat, A., Rahim, H. A., Hammood, D. A., Ahmad, R. B., & Abbasi, Q. H. (2018). Critical data-based incremental cooperative communication for wireless body area network. Sensors (Basel). https://doi.org/10.3390/s18113661

    Article  Google Scholar 

  3. Hammood, D. A., Rahim, H. A., Akhayyat, A., Ahmad, R. B., & Abbasi, Q. H. (2018). Reliable emergency data transmission using transmission mode selection in wireless body area network. Cogent Engineering., 5(1), 1–19. https://doi.org/10.1080/23311916.2018.1562859

    Article  Google Scholar 

  4. Mishra, D., De, S., Jana, S. S., Basagni, S., Chowdhury, K., & Heinzelman, W. (2015). Smart RF energy harvesting communications: Challenges and opportunities. IEEE Communications Magazine, 53(4), 70–78. https://doi.org/10.1109/MCOM.2015.7081078

    Article  Google Scholar 

  5. Varshney, L. R. (2008). Transporting information and energy simultaneously. IEEE Int. Symp. Inf. Theory Proc. https://doi.org/10.1109/ISIT.2008.4595260

    Article  Google Scholar 

  6. Wang, L., Hu, F., Ling, Z., & Wang, B. (2017). Wireless information and power transfer to maximize information throughput in WBAN. IEEE Internet of Things Journal, 4(5), 1663–1670. https://doi.org/10.1109/JIOT.2017.2734682

    Article  Google Scholar 

  7. Ghamari, M., Janko, B., Sherratt, R. S., Harwin, W., Piechockic, R., & Soltanpur, C. (2016). A survey on wireless body area networks for ehealthcare systems in residential environments. Sensors (Switzerland), 16(6), 1–33. https://doi.org/10.3390/s16060831

    Article  Google Scholar 

  8. Yin, Y., Zeng, Y., Chen, X., & Fan, Y. (2016). The internet of things in healthcare: An overview. Journal of Industrial Information Integration, 1, 3–13. https://doi.org/10.1016/j.jii.2016.03.004

    Article  Google Scholar 

  9. Yeh, K. H. (2016). A secure IoT-based healthcare system with body sensor networks. IEEE Access, 4, 10288–10299. https://doi.org/10.1109/ACCESS.2016.2638038

    Article  Google Scholar 

  10. Kumar, D. (2012). Healthcare monitoring system using wireless sensor network. International Journal of Advanced Networking and Applications., 1500(01), 1497–1500.

    Google Scholar 

  11. Moosavi, S. R., et al. (2016). End-to-end security scheme for mobility enabled healthcare Internet of Things. Future Generation Computer Systems, 64, 108–124. https://doi.org/10.1016/j.future.2016.02.020

    Article  Google Scholar 

  12. Luo, E., Bhuiyan, M. Z. A., Wang, G., Rahman, M. A., Wu, J., & Atiquzzaman, M. (2018). PrivacyProtector: Privacy-protected patient data collection in IoT-based healthcare systems. IEEE Communications Magazine, 56(2), 163–168. https://doi.org/10.1109/MCOM.2018.1700364

    Article  Google Scholar 

  13. Tao, H., Bhuiyan, M. Z. A., Abdalla, A. N., Hassan, M. M., Zain, J. M., & Hayajneh, T. (2019). Secured data collection with hardware-based ciphers for IoT-based healthcare. IEEE Internet of Things Journal, 6(1), 410–420. https://doi.org/10.1109/JIOT.2018.2854714

    Article  Google Scholar 

  14. Hamza, R., Yan, Z., Muhammad, K., Bellavista, P., & Titouna, F. (2019). A privacy-preserving cryptosystem for IoT E-healthcare. Information Science (Ny). https://doi.org/10.1016/j.ins.2019.01.070

    Article  MATH  Google Scholar 

  15. Elhoseny, M., Ramírez, G., Abu-Elnasr, O. M., Shawkat, S. A., Arunkumar, N., & Farouk, A. (2018). Secure medical data transmission model for IoT-based healthcare systems. IEEE Access, 6, 20596–20608. https://doi.org/10.1109/ACCESS.2018.2817615

    Article  Google Scholar 

  16. Alkhayyat, A., Thabit, A. A., Al-Mayali, F. A., & Abbasi, Q. H. (2019). WBSN in IoT health-based application: Toward delay and energy consumption minimization. Journal of Sensors. https://doi.org/10.1155/2019/2508452

    Article  Google Scholar 

  17. Liao, Y., Leeson, M. S., Higgins, M. D., & Bai, C. (2016). Analysis of in-to-out wireless body area network systems: Towards QoS-aware health internet of things applications. Electronics, 5(3), 38. https://doi.org/10.3390/electronics5030038

    Article  Google Scholar 

  18. Catarinucci, L., et al. (2015). An IoT-aware architecture for smart healthcare systems. IEEE Internet of Things Journal, 2(6), 515–526. https://doi.org/10.1109/JIOT.2015.2417684

    Article  Google Scholar 

  19. Chen, X., Ma, M., & Liu, A. (2018). Dynamic power management and adaptive packet size selection for IoT in e-Healthcare. Computers and Electrical Engineering, 65, 357–375. https://doi.org/10.1016/j.compeleceng.2017.06.010

    Article  Google Scholar 

  20. Aktas, F., Ceken, C., & Erdemli, Y. E. (2018). IoT-based healthcare framework for biomedical applications. Journal of Medical and Biological Engineering, 38(6), 966–979. https://doi.org/10.1007/s40846-017-0349-7

    Article  Google Scholar 

  21. Kartsakli, E., et al. (2014). A survey on M2M systems for mhealth: A wireless communications perspective. Sensors (Switzerland), 14(10), 18009–18052. https://doi.org/10.3390/s141018009

    Article  Google Scholar 

  22. Wu, T., Wu, F., Redoute, J. M., & Yuce, M. R. (2017). an autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access, 5, 11413–11422. https://doi.org/10.1109/ACCESS.2017.2716344

    Article  Google Scholar 

  23. Kalaiselvi, K., Suresh, G. R., & Ravi, V. (2018). Genetic algorithm based sensor node classifications in wireless body area networks (WBAN). Cluster Computing. https://doi.org/10.1007/s10586-018-1770-6

    Article  Google Scholar 

  24. Logambal, M., & Thiagarasu, V. (2017). Healthcare monitoring systems: A WBAN approach for patient monitoring. IJFRCSCE, 3(12), 26–31.

    Google Scholar 

  25. Alam, M. M., Ben Hamida, B., Berder, O., Menard, D., & Sentieys, O. (2016). A heuristic self-adaptive medium access control for resource-constrained WBAN systems. IEEE Access, 4, 1287–1300. https://doi.org/10.1109/ACCESS.2016.2539299

    Article  Google Scholar 

  26. Ahmed, T., & Le Moullec, Y. (2017). A QoS optimization approach in cognitive body area networks for healthcare applications. Sensors (Switzerland). https://doi.org/10.3390/s17040780

    Article  Google Scholar 

  27. Romero, E., Blesa, J., & Araujo, A. (2019). An adaptive energy aware strategy based on game theory to add privacy in the physical layer for cognitive WSNs. Ad Hoc Networks, 92, 101800. https://doi.org/10.1016/j.adhoc.2018.10.026

    Article  Google Scholar 

  28. Arfaoui, A., Kribeche, A., Senouci, S. M., & Hamdi, M. (2019). Game-based adaptive anomaly detection in wireless body area networks. Comput. Networks, 163, 106870. https://doi.org/10.1016/j.comnet.2019.106870

    Article  Google Scholar 

  29. Ahmad, I., Ullah, G., Khan, W. U., Naseem, R., & Sheraz, A. (2019). Investigation of IEEE 802.15. 4 fixed duty cycle during nodes mobility under different wban performance metrices. International Journal of Computer Science and Information Security (IJCSIS), 17(4).

  30. Kaur, N., & Singh, S. (2017). Optimized cost effective and energy efficient routing protocol for wireless body area networks. Ad Hoc Networks, 61, 65–84. https://doi.org/10.1016/j.adhoc.2017.03.008

    Article  Google Scholar 

  31. Pushpan, S., & Velusamy, B. (2019). Fuzzy-based dynamic time slot allocation for wireless body area networks. Sensors (Switzerland). https://doi.org/10.3390/s19092112

    Article  Google Scholar 

  32. Thakur, M., & Parvinder, E. (2017). Wireless body area network (WBAN ) for health monitoring system using genetic algorithm and fuzzy logic. International Journal of Advanced Research in Computer Science, 8(8), 92–97.

    Article  Google Scholar 

  33. Zang, W., Miao, F., Gravina, R., Sun, F., Fortino, G., & Li, Y. (2019). CMDP-based intelligent transmission for wireless body area network in remote health monitoring. Neural Computing Application. https://doi.org/10.1007/s00521-019-04034-x

    Article  Google Scholar 

  34. Cicioglu, M., & Calhan, A. (2019). Performance evaluation of dynamic HUB selection algorithm for WBAN. In 2018 6th international conference on control engineering & information technology (CEIT), pp. 1–5, 2019, doi: https://doi.org/10.1109/ceit.2018.8751776.

  35. Isabel, R. A., & Baburaj, E. (2017). Multi-agent based maxmin markov probability for QOS aware routing in WBAN. Biomedical Research, 28(9), 4261–4269.

    Google Scholar 

  36. Kramer, R. A., & Rhee, J. P. (2000). The need, advances and challenges related to wireless body area network communication technology.

  37. Ling, Z., Hu, F., & Shao, M. (2019). The optimal control policy for point-to-point wireless body area network based on simultaneous time-ratio and transmission power allocation. IEEE Access, 7, 46454–46460. https://doi.org/10.1109/ACCESS.2019.2901969

    Article  Google Scholar 

  38. Kim, S. (2016). Cognitive hierarchy thinking based behavioral game model for IoT power control algorithm. Computing Networks, 110, 79–90. https://doi.org/10.1016/j.comnet.2016.09.020

    Article  Google Scholar 

  39. Borah, S. J., Dhurandher, S. K., Woungang, I., & Kumar, V. (2017). A game theoretic context-based routing protocol for opportunistic networks in an IoT scenario. Computing Networks, 129, 572–584. https://doi.org/10.1016/j.comnet.2017.07.005

    Article  Google Scholar 

  40. Kim, S. (2017). Inspection game based cooperative spectrum sensing and sharing scheme for cognitive radio IoT system. Computer Communications, 105, 116–123. https://doi.org/10.1016/j.comcom.2017.01.015

    Article  Google Scholar 

  41. Chen, X., Xu, Y., & Liu, A. (2017). Cross layer design for optimizing transmission reliability, energy efficiency, and lifetime in body sensor networks. Sensors (Switzerland), 17(4), 11–15. https://doi.org/10.3390/s17040900

    Article  Google Scholar 

  42. Latha, R., Vetrivelan, P., & Jagannath, M. (2017). Balancing emergency message dissemination and network lifetime in wireless body area network using ant colony optimization and Bayesian game formulation. Informatics in Medicine Unlocked, 8, 60–65.

    Article  Google Scholar 

  43. Shimly, S., Smith, D.B., & Movassaghi, S. (2017) Cross-layer optimized routing with low duty cycle TDMA across multiple wireless body area networks. In IEEE international conference on communications (ICC) (pp. 1–6), doi: https://doi.org/10.1109/ICC.2017.7996895.

  44. Shimly, S. M., Smith, D. B., & Movassaghi, S. (2019). Experimental analysis of cross-layer optimization for distributed wireless body-to-body networks. IEEE Sensors. Journal. https://doi.org/10.1109/jsen.2019.2937356

    Article  Google Scholar 

  45. Ullah, F., Habib, M. A., Farhan, M., Khalid, S., Durrani, M. Y., & Jabbar, S. (2017). Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare. Sustainable Cities and Society, 34, 90–96. https://doi.org/10.1016/j.scs.2017.06.010

    Article  Google Scholar 

  46. Darwish, A., Hassanien, A. E., Elhoseny, M., Sangaiah, A. K., & Muhammad, K. (2017). The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: Opportunities, challenges, and open problems. Journal of Ambient Intelligence and Humanized Computing, 10(10), 1–16. https://doi.org/10.1007/s12652-017-0659-1

    Article  Google Scholar 

  47. Ali, F., Islam, S. M. R., Kwak, D., Khan, P., Ullah, N., Yoo, S. J., & Kwak, K. S. (2018). Type-2 fuzzy ontology–aided recommendation systems for IoT–based healthcare. Computer Communications, 119, 138–155. https://doi.org/10.1016/j.comcom.2017.10.005

    Article  Google Scholar 

  48. Razavi, A;Jahed, M. . (2017). Node positioning and lifetime optimization for wireless body area networks. IEEE Sensors Journal, 17(14), 4647–4660. https://doi.org/10.1109/JSEN.2017.2710350

    Article  Google Scholar 

  49. Henna, S., et al. (2017). A fair contention access scheme for low-priority traffic in wireless body area networks. Sensors, 17(9), 1931.

    Article  Google Scholar 

  50. Hammood, D. A., Rahim, H. A., Ahmad, R. B., Alkhayyat, A., Salleh, M. E. M., Abdulmalek, M., & Abbasi, Q. H. (2018). Enhancement of the duty cycle cooperative medium access control for wireless body area networks. IEEE Access, 7, 3348–3359.

    Article  Google Scholar 

  51. Hammood, D. A., Rahim, H. A., Alkhayyat, A., Ahmad, R. B., Jusoh, M., & Abbasi, Q. H. (2019, August). Non-cooperative game theory approach for cognitive cooperative communication in WBAN. In 2019 IEEE international conference on smart instrumentation, measurement and application (icsIMA) (pp. 1–5). IEEE.

  52. Omeni, O., Wong, A. C. W., Burdett, A. J., & Toumazou, C. (2008). Energy efficient medium access protocol for wireless medical body area sensor networks. IEEE Transactions on biomedical circuits and systems, 2(4), 251–259.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

D. A. H designed the algorithm, performed the studies, analyzed the data, interpreted the results and wrote the manuscript. H. A. R, A. A. and R. B. A supervised D. A. H, gave ideas about performing the studies, validated the method and analysis and edited the manuscript. H. A. R, A. A. and R. B. A edited the layout and the contents of the manuscript including how to present the data.

Corresponding author

Correspondence to Hasliza A. Rahim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammood, D.A., Rahim, H.A., Alkhayyat, A. et al. Duty Cycle Optimization Using Game Theory Two Master Nodes Cooperative Protocol in WBAN. Wireless Pers Commun 122, 2479–2504 (2022). https://doi.org/10.1007/s11277-021-09003-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09003-z

Keywords

Navigation