Skip to main content
Log in

Estimation of Visual Performance Enhancement with Spatial Filters for an Image Transmission over a Turbulent OWC Link

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

For upcoming futuristic communication systems, the Optical Wireless Communication (OWC) with its inherent advantages is becoming popular among service providers. The research in the past has primarily focused on Quality of service (QoS) aspect for OWC in the presence of atmospheric turbulence however, to assess the real time outcome of a service, the evaluation of both QoS and Quality of Experience (QoE) deliver a holistic approach. A much Less effort in the existing literature has been paid to this. Authors in this work attempt to determine the QoE for image transmission over a turbulent OWC link while considering the Structure Similarity Index (SSIM) as a visual performance indicator under varying turbulence strengths (regimes). A functional model to forecast the performance of SSIM practicable for all the regimes is proposed. The most suitable model is bimodal Gaussian mixture model which aptly describes the system performance. To improve the performance, spatial domain filters such as Median and Wiener filters have been employed. An increase of 125 m in the propagation distance and 5.88 dB in received SNR can be achieved while maintaining the SSIM at a 90% for median filter restoration in moderate turbulence regime for simulated values while predicted values suggest an increase of 115 m and 5.18 dB at same level. The results show that the proposed model is in good agreement with simulated values and median filter in moderate turbulence performs best out of all the situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

There is no associated data with this manuscript.

Code Availability

There is no custom code for this manuscript.

References

  1. Fischer, W. (2020). Outlook: Digital Video and Audio Broadcasting Technology. Signals and communication technology (pp. 1000–1001). Springer. https://doi.org/10.1007/978-3-030-32185-7_49

  2. Ramaswami, R., Sivarajan, K. N., & Sasaki, G. H. (2010). Access networks. Optical networks (pp.629–652). Morgan Kaufmann. https://doi.org/10.1016/b978-0-12-374092-2.50019-9

  3. Kaushal, H., & Kaddoum, G. (2017). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys and Tutorials, 19(1), 57–96. https://doi.org/10.1109/COMST.2016.2603518

    Article  Google Scholar 

  4. Kaushal, H., & Georges, K. (2016). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys and Tutorials. https://doi.org/10.1109/comst.2016.2603518

    Article  Google Scholar 

  5. Adardour, H. E., & Kameche, S. (2020). Performance analysis of free space optical networks using the beta-average recursive estimator. Wireless Personal Communications, 114, 2717–2732. https://doi.org/10.1007/s11277-020-07499-5

    Article  Google Scholar 

  6. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A Communication theory perspective. IEEE Communications Surveys and Tutorials. https://doi.org/10.1109/comst.2014.2329501

    Article  Google Scholar 

  7. Perez, J., Zvanovec, S., Ghassemlooy, Z., & Popoola, W. O. (2014). Experimental characterization and mitigation of turbulence induced signal fades within an ad hoc FSO network. Optics Express. https://doi.org/10.1364/OE.22.003208

    Article  Google Scholar 

  8. Ghassemlooy, Z., Popoola, W. O.(2010). Terrestrial free-space optical communications. Mobile and Wireless Communications: Network Layer and Circuit Level Design, Salma Ait Fares and Fumiyuki Adachi, IntechOpen, https://doi.org/10.5772/76-8. Available from: https://www.intechopen.com/books/mobile-and-wireless-communications-network-layer-and-circuit-level-design/terrestrial-free-space-optical-communications

  9. Nistazakis, H. E., Tsiftsis, T. A., & Tombras, G. S. (2009). Performance analysis of free space optical communication systems over atmospheric turbulence channels. IET Communications, 3(8), 1402–1409. https://doi.org/10.1049/IET-COM.2008.0212

    Article  Google Scholar 

  10. Kumar, A., & Krishnan, P. (2020). Performance analysis of RoFSO links with spatial diversity over combined channel model for 5G in smart city applications. Optics Communications. https://doi.org/10.1016/j.optcom.2020.125600

    Article  Google Scholar 

  11. Elsayed, E. E., & Yousif, B. B. (2020). Performance evaluation and enhancement of the modified OOK based IM/DD techniques for hybrid fiber/FSO communication over WDM-PON systems. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-020-02497-0

    Article  Google Scholar 

  12. Farghal, A. E. A. (2019). On the performance of OCDMA/SDM PON based on FSO under atmospheric turbulence and pointing errors. Optics and Laser Technology, 114, 196–203. https://doi.org/10.1016/j.optlastec.2019.01.048

    Article  Google Scholar 

  13. Nguyen, D.-N., Vallejo, L., Bohata, J., Ortega, B., Ghassemlooy, Z., & Zvanovec, S. (2020). Wideband QAM-over-SMF/turbulent FSO downlinks in a PON architecture for ubiquitous connectivity. Optics Communications. https://doi.org/10.1016/j.optcom.2020.126281

    Article  Google Scholar 

  14. Yeh, C. H., Chow, C. W., Gu, C. S., Guo, B. S., Cheng, Y. J., & Chen, J. H. (2018). Performance analysis of free space optical communication traffic integrated with passive optical network. Electronics Letters. https://doi.org/10.1049/el.2018.5559

    Article  Google Scholar 

  15. Tripathi, A., Soni, G. G., Gupta, S., et al. (2020). An optical architecture of 12 × 2.5 Gbps wavelength-interleaving free space hybrid distribution system under turbulent atmosphere. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07699-z

    Article  Google Scholar 

  16. Jaffer, S. S., Hussain, A., Qureshi, M. A., et al. (2020). Towards the shifting of 5G front haul traffic on passive optical network. Wireless Personal Communications, 112, 1549–1568. https://doi.org/10.1007/s11277-020-07115-6

    Article  Google Scholar 

  17. Alimi, I., Shahpari, A., Sousa, A., Ferreira, R., Monteiro, P., & Teixeira, A. (2017). Challenges and opportunities of optical wireless communication technologies. Optical Communication Technology. https://doi.org/10.5772/intechopen.69113

    Article  Google Scholar 

  18. Kora, A. D., Rabany, C. B., Damoue, Z., & Dioum, I. (2018). Free space passive optical network. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. https://doi.org/10.1007/978-3-319-72965-7_28

    Article  Google Scholar 

  19. Hulea, M., Ghassemlooy, Z., Rajbhandari, S., & Tang, X. (2014). Compensating for optical beam scattering and wandering in FSO communications. Journal of Lightwave Technology, 32(7), 1323–1328. https://doi.org/10.1109/JLT.2014.2304182

    Article  Google Scholar 

  20. Prabu, K., Kumar, D. S., & Srinivas, T. (2014). Performance analysis of FSO links under strong atmospheric turbulence conditions using various modulation schemes. Optik—International Journal for Light and Electron Optics, 125(19), 5573–5581. https://doi.org/10.1016/j.ijleo.2014.07.028

    Article  Google Scholar 

  21. Krishnan, P., & Sriram Kumar, D. (2014). Bit error rate analysis of free-space optical system with spatial diversity over strong atmospheric turbulence channel with pointing errors. Optical Engineering, 53(12), 126108. https://doi.org/10.1117/1.OE.53.12.126108

    Article  Google Scholar 

  22. Vavoulas, A., Sandalidis, H. G., & Varoutas, D. (2012). Weather effects on FSO network connectivity. Journal of Optical Communications and Networking, 4(10), 734–740. https://doi.org/10.1364/JOCN.4.000734

    Article  Google Scholar 

  23. Garrido-Balsells, J. M., Jurado-Navas, A., Paris, J. F., Castillo-Vázquez, M., & Puerta-Notario, A. (2013). On the capacity of ℳ-distributed atmospheric optical channels. Optics Letters, 38(20), 3984–3987. https://doi.org/10.1364/OL.38.003984

    Article  Google Scholar 

  24. Peppas, K. P., Stassinakis, A. N., Topalis, G. K., Nistazakis, H. E., & Tombras, G. S. (2012). Average capacity of optical wireless communication systems over I-K atmospheric turbulence channels. Journal of Optical Communications and Networking, 4(12), 1026–1032. https://doi.org/10.1364/JOCN.4.001026

    Article  Google Scholar 

  25. Nistazakis, H. E., Assimakopoulos, V. D., & Tombras, G. S. (2011). Performance estimation of free space optical links over negative exponential atmospheric turbulence channels. Optik -International Journal for Light and Electron Optics, 122(24), 2191–2194. https://doi.org/10.1016/j.ijleo.2011.01.013

    Article  Google Scholar 

  26. Nistazakis, H. E., Tombras, G. S., Tsigopoulos, A. D., Karagianni, E. A., & Fafalios, M. E. (2009). Capacity estimation of optical wireless communication systems over moderate to strong turbulence channels. Journal of Communications and Networks, 11(4), 384–389. https://doi.org/10.1109/JCN.2009.6391352

    Article  Google Scholar 

  27. Majumdar, A. K., Luna, C. E., Idell, P. S. (2007). Reconstruction of probability density function of intensity fluctuations relevant to free space laser communications through atmospheric turbulence. In: Proceedings of SPIE 6709, Free-Space Laser Communications VII; 67090M. https://doi.org/10.1117/12.728699

  28. Uysal, M., Li, J., & Yu, M. (2006). Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels. IEEE Transactions on Wireless Communications, 5(6), 1229–1233. https://doi.org/10.1109/TWC.2006.1638639

    Article  Google Scholar 

  29. Varela, M., Skorin-Kapov, L., Ebrahimi, T. (2014). Quality of service versus quality of experience. In: Möller, S., Raake, A. (eds) Quality of experience. T-Labs series in telecommunication services. Springer. https://doi.org/10.1007/978-3-319-02681-7_6

  30. Hoßfeld, T., Heegaard, P. E., Varela, M., & Möller, S. (2016). QoE beyond the MOS: an in-depth look at QoE via better metrics and their relation to MOS. Quality and User Experience. https://doi.org/10.1007/s41233-016-0002-1

    Article  Google Scholar 

  31. Song, W. (2020). Quality of experience. In: Shen, X., Lin, X., Zhang, K. (eds) Encyclopedia of wireless networks. Springer. https://doi.org/10.1007/978-3-319-78262-1

  32. Wang, Z., Lu, L., & Bovik, A. C. (2004). Video quality assessment based on structural distortion measurement. Signal Processing: Image Communication, 19(2), 121–132. https://doi.org/10.1016/S0923-5965(03)00076-6

    Article  Google Scholar 

  33. Wang Z., Bovik A. C., Sheikh H. R., & Simoncelli E. P (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4),(pp. 600–612). https://doi.org/10.1109/TIP.2003.819861

  34. Al-Halafi, A., Oubei, H. M., Ooi, B. S., & Shihada, B. (2017). Real-Time Video Transmission Over Different Underwater Wireless Optical Channels Using a Directly Modulated 520 nm Laser Diode. Journal of Optical Communications and Networking, 9(10), (pp. 826–832). https://doi.org/10.1364/JOCN.9.000826

  35. Winkler, S. (2005). Metric evaluation. Digital video quality vision models and metrics. Wiley. https://doi.org/10.1002/9780470024065.ch5

    Book  Google Scholar 

  36. Winkler, S. (2005). Vision. Digital video quality: Vision models and metrics. Wiley. https://doi.org/10.1002/9780470024065.ch2

    Book  Google Scholar 

  37. Shi, Y., Huang, S., Luo, Lu., Yuan, Yu., & Yue. (2019). Bias controller of Mach-Zehnder modulator for electro-optic analog-to-digital converter. Micromachines, 10(12), 800. https://doi.org/10.3390/mi10120800

    Article  Google Scholar 

  38. Chen, W. F., Wei, Z. J., Guo, L., Hou, L. Y., Wang, G., Wang, J. D., Zhang, Z. M., Guo, J. P., & Lou, S. H. (2014). An autobias control system for the electro—optic modulator used in a quantum key distribution system. Chinese Physics B, 23(8), 261–268. https://doi.org/10.1088/1674-1056/23/8/080304

    Article  Google Scholar 

  39. Popoola, W. O. (2009) Subcarrier Intensity modulated free-space optical communication systems. Newcastle. Academic Thesis. University of Northhumbria at Newcastle.

  40. Andrews, L. C. & Phillips, R. L. (2005). Laser Beam Propagation through Random Media (pp. 782). 2nd ed. Bellingham, Wash, SPIE Press. ISBN 08-194-5948-8.

  41. Andrews, L. C., Phillips, R. L, & Cynthia, Y. H. (2001). Laser beam scintillation with applications, Vol. 99. SPIE press, ISBN: 9781510604896.

  42. Li, M., & Cvijetic, M. (2015). Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction. Applied Optics, 54(6), 1453–1462. https://doi.org/10.1364/AO.54.001453

    Article  Google Scholar 

  43. Priyanka-Singh, M. L., Gill, H. S., Singh, M., & Kaur, S. (2020). An experimental evaluation of link outage due to beam wander in a turbulent FSO link. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07333-y

    Article  Google Scholar 

  44. Bekkali, A., Ben Naila, C., Kazaura, K., Wakamori, K., & Matsumoto, M. (2010). Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by gamma-gamma distribution. IEEE Photonics Journal, 2(3), 510–520. https://doi.org/10.1109/JPHOT.2010.2050306

    Article  Google Scholar 

  45. Arnon, S. (2016). Optical Wireless Communications. In: Driggers, R.G., Hoffman, C., Driggers, R. (Eds.) Encyclopedia of Optical and Photonic Engineering (pp. 1866–1886). CRC Press, Boca Raton https://doi.org/10.1081/E-EOE2

  46. Muhammad, S. S., Köhldorfer, P., Leitgeb, E. (2005). Channel modeling for terrestrial free optical links. In: Proceedings of the 7th International Conference on Transparent Optical Networks (ICTON), Barcelona, Spain, pp. 407–410. https://doi.org/10.1109/ICTON.2005.1505832

  47. Pati, P. S., & Krishnan, P. (2019). Modelling of OFDM based RoFSO system for 5G applications over varying weather conditions: A case study. Optik International Journal for Light and Electron Optics, 184(2019), 313–323. https://doi.org/10.1016/j.ijleo.2019.03.031

    Article  Google Scholar 

  48. Nistazakis, H. E., Stassinakis, A. N., Muhammad, S. S., & Tombras, G. S. (2014). BER estimation for multi hop RoFSOQAM or PSK OFDM communication systems over gamma gamma or exponentially modeled turbulence channels. Optics and Laser Technology, 2014(64), 106–112. https://doi.org/10.1016/j.optlastec.2014.05.004

    Article  Google Scholar 

  49. Sharma, A., & Singh, J. (2013). Image denoising using spatial domain filters: A quantitative study. In: 2013 6th International Congress on Image and Signal Processing (CISP). https://doi.org/10.1109/cisp.2013.6744005

  50. Park, C. R., Kang, S.-H., & Lee, Y. (2020). Median modified wiener filter for improving the image quality of gamma camera images. Nuclear Engineering and Technology. https://doi.org/10.1016/j.net.2020.03.022

    Article  Google Scholar 

  51. Ekstrom, M. (1982). Realizable Wiener filtering in two dimensions. IEEE Transactions on Acoustics, Speech, and Signal Processing, 30(1), 31–40. https://doi.org/10.1109/tassp.1982.1163844

    Article  MATH  Google Scholar 

  52. Gill, H. S., & Singh, M. L. (2021). Performance evaluation of DVB-t image transmission over a MIMO OWC channel at 650 nm under varying turbulence regimes. Wireless Networks, 27, 1965–1979. https://doi.org/10.1007/s11276-021-02559-5

    Article  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harpuneet Singh Gill.

Ethics declarations

Conflict of interest

There is no conflict of interest among authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, H.S., Singh, M.L. Estimation of Visual Performance Enhancement with Spatial Filters for an Image Transmission over a Turbulent OWC Link. Wireless Pers Commun 122, 523–541 (2022). https://doi.org/10.1007/s11277-021-08911-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08911-4

Keywords

Navigation