Skip to main content
Log in

An Improved Task Allocation Scheme in Serverless Computing Using Gray Wolf Optimization (GWO) Based Reinforcement Learning (RIL) Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Serverless computing offers a wide variety of event-driven integrations and cloud services, easy development and implementation frameworks, and complex balancing and control of costs. With these benefits into consideration, the growing implementation of serverless systems means that the performance of the serverless system is measured and new techniques created to maximize the potential of the software. The serverless or system runtime features have shown major performance and cost advantages for event-driven cloud applications. While serverless runtimes are limited to applications requiring lightweight data and storage, such as the prediction and inference of machine learning, these applications have been improved beyond other cloud runtimes. In this paper, we propose a machine learning model to parallelize the jobs allocated to the event queue and the dispatcher of the serverless framework. We hence use Gray Wolf Optimization (GWO) model to improve the process of task allocation. Further, to optimize GWO, we use the Reinforcement Learning (RIL) approach that simultaneously optimizes the parameters of GWO and improves the task allocation. The simulation studies show that the proposed GWO-RIL offers reduced runtimes and it adapts with varying load conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eivy, A. (2017). Be wary of the economics of “Serverless” cloud computing. IEEE Cloud Computing, 4(2), 6–12.

    Article  Google Scholar 

  2. Adzic, G., & Chatley, R. (2017). Serverless computing: economic and architectural impact. In Proceedings of the 2017 11th joint meeting on foundations of software engineering (pp. 884–889). ACM.

  3. Saleem Akram, P. (2019). Investigations on metamaterial slot antenna for different wireless applications. International Journal of Scientific and Technology Research, 8(11), 34–39.

    Google Scholar 

  4. Thekkil, T. M., & Prabakaran, N. (2019). Minimizing remote monitoring service cost of wireless sensor networks using Krill swarm optimization. Wireless Personal Communications, 109(2), 1429–1448.

    Article  Google Scholar 

  5. Ketavath, K. N. (2019). Enhancement of gain with coplanar concentric ring patch antenna. Wireless Personal Communications, 108(3), 1447–1457.

    Article  Google Scholar 

  6. Gayathri, N. B., Thumbur, G., Rajesh, Kumar P., Rahman, M. Z. U., Reddy, P. V., & Lay-Ekuakille, A. (2019). Efficient and secure pairing-free certificateless aggregate signature scheme for healthcare wireless medical sensor networks. IEEE Internet of Things Journal, 6(5), 9064–9075.

    Article  Google Scholar 

  7. Kumar Naik, K., & Amala Vijaya Sri, P. (2018). Design of concentric circular ring patch with DGS for dual-band at satellite communication and radar applications. Wireless Personal Communications, 98(3), 2993–3001.

    Article  Google Scholar 

  8. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R., Slominski, A. and Suter, P. (2017). Serverless computing: Current trends and open problems. In Research Advances in Cloud Computing (pp. 1–20). Springer, Singapore.

  9. Palumbo, F., Aceto, G., Botta, A., Ciuonzo, D., Persico, V., & Pescapé, A. (2019). Characterizing Cloud-to-user Latency as perceived by AWS and Azure users spread over the Globe. In 2019 IEEE global communications conference (GLOBECOM) (pp. 1–6). IEEE.

  10. Nastic, S., & Dustdar, S. (2018). Towards deviceless edge computing: Challenges, design aspects, and models for serverless paradigm at the edge. In The Essence of Software Engineering, pp. 121–136. Springer, Cham.

  11. Davahli, A., Shamsi, M., & Abaei, G. (2020). Hybridizing genetic algorithm and grey wolf optimizer to advance an intelligent and lightweight intrusion detection system for IoT wireless networks. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-01919-x.

    Article  Google Scholar 

  12. Alamiedy, T. A., Anbar, M., Alqattan, Z. N., & Alzubi, Q. M. (2019). Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm. Journal of Ambient Intelligence and Humanized Computing, 1–22.

  13. Makhadmeh, S. N., Khader, A. T., Al-Betar, M. A., & Naim, S. (2019). Multi-objective power scheduling problem in smart homes using grey wolf optimiser. Journal of Ambient Intelligence and Humanized Computing, 10(9), 3643–3667.

    Article  Google Scholar 

  14. Subramaniam, E. V. D., & Krishnasamy, V. (2020). Energy aware smartphone tasks offloading to the cloud using gray wolf optimization. Journal of Ambient Intelligence and Humanized Computing, 1–9.

  15. Anitha, P., & Kaarthick, B. (2019). Oppositional based Laplacian grey wolf optimization algorithm with SVM for data mining in intrusion detection system. Journal of Ambient Intelligence and Humanized Computing, 1–12.

  16. Li, J. (2005). Mutualcast: A serverless peer-to-peer multiparty real-time audio conferencing system. In 2005 IEEE international conference on multimedia and expo (pp. 602–605). IEEE.

  17. Alqaryouti, O., & Siyam, N. (2018). Serverless computing and scheduling tasks on cloud: A review. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 40(1), 235–247.

    Google Scholar 

  18. Sheik, A. R., Krishna, K. S. R., & Madhav, B. T. P. (2018). Circularly polarized defected ground broadband antennas for wireless communication applications. Lecture Notes in Electrical Engineering, 434, 419–427.

    Article  Google Scholar 

  19. Rajiya, S. K., Monika, M., & Madhav, B. T. P. (2018). Circular slotted reconfigurable antenna for wireless medical band and X-band satellite communication applications. Indian Journal of Public Health Research and Development, 9(6), 296–300.

    Article  Google Scholar 

  20. Prasad, B. S., Rao, P. M., & Madhav, B. T. P. (2018). Trapezoidal notch band frequency and polarization reconfigurable antenna for medical and wireless communication applications. Indian Journal of Public Health Research and Development, 9(6), 324–328.

    Article  Google Scholar 

  21. Priya, P. P., Khan, H., & Madhav, B. T. P. (2017). Defected ground structure circularly polarized wideband antennas for wireless communication applications. Journal of Advanced Research in Dynamical and Control Systems, 9(18), 122–130.

    Google Scholar 

  22. Cheerla, S., Venkata Ratnam, D., Meghana, S. R., Vishnu Varma, V. M. S., Altaf Hussain, S. K., & Jaya Sai Sravanth, K. (2017). Pathloss study for 61 GHZ wave D2D communications in indoor environment. Wireless Personal Communications, 97(1), 387–395.

    Article  Google Scholar 

  23. Pinto, D., Dias, J. P., & Ferreira, H. S. (2018). Dynamic allocation of serverless functions in IoT environments. In 2018 IEEE 16th international conference on embedded and ubiquitous computing (EUC) (pp. 1–8). IEEE.

  24. Denninnart, C., Gentry, J., & Salehi, M. A. (2019). Improving robustness of heterogeneous serverless computing systems via probabilistic task pruning. arXiv preprint arXiv:1905.04456.

  25. Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., & Pallickara, S. (2018). Serverless computing: An investigation of factors influencing microservice performance. In 2018 IEEE international conference on cloud engineering (IC2E) (pp. 159–169). IEEE.

  26. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C. C., Khandelwal, A., Pu, Q., & Gonzalez, J. E. (2019). Cloud programming simplified: A berkeley view on serverless computing. arXiv preprint arXiv:1902.03383.

  27. Fox, G. C., Ishakian, V., Muthusamy, V., & Slominski, A. (2017). Status of serverless computing and function-as-a-service (faas) in industry and research. arXiv preprint arXiv:1708.08028.

  28. Pérez, A., Moltó, G., Caballer, M., & Calatrava, A. (2018). Serverless computing for container-based architectures. Future Generation Computer Systems, 83, 50–59.

    Article  Google Scholar 

  29. Van Eyk, E., Toader, L., Talluri, S., Versluis, L., Uță, A., & Iosup, A. (2018). Serverless is more: From PaaS to present cloud computing. IEEE Internet Computing, 22(5), 8–17.

    Article  Google Scholar 

  30. Feng, L., Kudva, P., Da Silva, D., & Hu, J. (2018). Exploring serverless computing for neural network training. In 2018 IEEE 11th international conference on cloud computing (CLOUD) (pp. 334–341). IEEE.

  31. Kumanov, D., Hung, L. H., Lloyd, W., & Yeung, K. Y. (2018). Serverless computing provides on-demand high performance computing for biomedical research. arXiv preprint arXiv:1807.11659.

  32. Nastic, S., Rausch, T., Scekic, O., Dustdar, S., Gusev, M., Koteska, B., et al. (2017). A serverless real-time data analytics platform for edge computing. IEEE Internet Computing, 21(4), 64–71.

    Article  Google Scholar 

  33. Cicconetti, C., Conti, M., & Passarella, A. (2018). An architectural framework for serverless edge computing: design and emulation tools. In 2018 IEEE international conference on cloud computing technology and science (CloudCom) (pp. 48–55). IEEE.

  34. Wurster, M., Breitenbücher, U., Képes, K., Leymann, F., & Yussupov, V. (2018). Modeling and automated deployment of serverless applications using TOSCA. In 2018 IEEE 11th conference on service-oriented computing and applications (SOCA) (pp. 73–80). IEEE.

  35. Emary, E., Zawbaa, H. M., & Grosan, C. (2017). Experienced gray wolf optimization through reinforcement learning and neural networks. IEEE Transactions on Neural Networks and Learning Systems, 29(3), 681–694.

    Article  MathSciNet  Google Scholar 

  36. Yuvaraj, N., Raja, R., & Dhas, C. (2018). Analysis on improving the response time with PIDSARSA-RAL in ClowdFlows mining platform. EAI Endorsed Transactions on Energy Web, 5(20), 1–10.

    Article  Google Scholar 

  37. Mosavi, A. (2014). Application of data mining in multiobjective optimization problems. International Journal for Simulation and Multidisciplinary Design Optimization, 5, A15.

    Article  Google Scholar 

  38. Wong, L. I., Sulaiman, M. H., Mohamed, M. R., & Hong, M. S. (2014). Grey wolf optimizer for solving economic dispatch problems. In 2014 IEEE international conference on power and energy (PECon) (pp. 150–154). IEEE.

  39. Yagoubi, B., & Slimani, Y. (2007). Task load balancing strategy for grid computing. Journal of Computer Science, 3(3), 186–194.

    Article  Google Scholar 

  40. Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (Vol. 4, pp. 1942–1948).

  41. Watkins, C. J. C. H., & Dayan, P. (1992). Technical note: Q-learning. Machine Learning, 8.

  42. Bradtke, S, & Duff, M. (1994). Reinforcement learning methods for continuous-time Markov decision problems. Advances in Neural Information Processing Systems, 7, 393–400.

    Google Scholar 

  43. Sutton, Richard S. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse coding. In Advances in Neural Information Processing Systems, pp. 1038–1044.

  44. Fan, X, Weber, W-D, & Barroso, L. A. (2007). Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 35(2), 13–23.

    Article  Google Scholar 

  45. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529.

    Article  Google Scholar 

  46. Rao, J., Bu, X., Xu, C. Z., Wang, L., & Yin, G. (2009). VCONF: A reinforcement learning approach to virtual machines auto-configuration. In Proceedings of the 6th international conference on autonomic computing (pp. 137–146). ACM.

  47. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

  48. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

  49. Elmougy, S., Sarhan, S., & Joundy, M. (2017). A novel hybrid of shortest job first and round Robin with dynamic variable quantum time task scheduling technique. Journal of Cloud Computing, 6, 12.

    Article  Google Scholar 

  50. Zhao, Y., Chen, J., Wu, D., Teng, J., & Yu, S. (2019). Multi-task network anomaly detection using federated learning. In Proceedings of the tenth international symposium on information and communication technology (pp. 273–279).

  51. Aceto, G., Ciuonzo, D., Montieri, A., Persico, V., & Pescapé, A. (2019). Know your big data trade-offs when classifying encrypted mobile traffic with deep learning. In 2019 Network traffic measurement and analysis conference (TMA) (pp. 121–128). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yuvaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuvaraj, N., Karthikeyan, T. & Praghash, K. An Improved Task Allocation Scheme in Serverless Computing Using Gray Wolf Optimization (GWO) Based Reinforcement Learning (RIL) Approach. Wireless Pers Commun 117, 2403–2421 (2021). https://doi.org/10.1007/s11277-020-07981-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07981-0

Keywords

Navigation