Skip to main content
Log in

Secure Image Communication Through Adaptive Deer Hunting Optimization Based Vector Quantization Coding of Perceptually Encrypted Images

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Communication fields are growing rapidly in the recent era, so transmitting the multimedia contents through an open channel becomes a challenging task. The multimedia contents that are transmitted through this channel are highly prone to vulnerabilities and attacks. Therefore, secure and efficient data communication is considered as a major concern in the multimedia communication systems. So, major efforts are taken by researchers to safeguard the originality of each image. In a conventional system, the secure image communication process was achieved by compressing the content first, and then encryption is performed over the compressed data. Even though it met the required security and compression ratio, but some applications may require the reverse system. In this method, the encryption process is conducted prior to compression to improve the privacy of user data. Moreover, the initial concentration is given for improving content privacy rather than concentrating on size reduction. This paper proposes a reversed system that uses block based perceptual encryption algorithm for encryption and vector quantization (VQ) with hybrid Lloyd–Buzo–Gray (LBG)-Adaptive Deer Hunting Optimization (ADHO) algorithm (VQ-LBG-ADHO) for compression. So, the content secrecy gets improved. The involvement of this adaptive optimization method enhances the performance of VQ in the compression process. This method highly concentrates on secure communication, so the reverse process is followed in this method. It not only improves the image secrecy, however, it further enhances the image quality. The performance of this secure communication process is compared with state-of-the-art algorithms, and the results reveal that the proposed method outperforms the other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carpentieri, B. (2018). Efficient compression and encryption for digital data transmission. Security and Communication Networks,. https://doi.org/10.1155/2018/9591768.

    Article  Google Scholar 

  2. Kumar, M., Aggarwal, A., & Garg, A. (2014). A review on various digital image encryption techniques and security criteria. International Journal of Computer Applications, 96(13), 19–26.

    Article  Google Scholar 

  3. Slepian, D., & Wolf, J. K. (1973). Noiseless coding of correlated information sources. IEEE Transactions on Information Theory, 19(197), 471–480.

    Article  MathSciNet  Google Scholar 

  4. Wyner, A., & Ziv, J. (1976). The rate-distortion function for source coding with side information at the decoder. IEEE Transactions on Information Theory, 22, 1–10.

    Article  MathSciNet  Google Scholar 

  5. Pradhan, S. S., & Ramchandran, K. (2003). Distributed source coding using syndromes (DISCUS): design and construction. IEEE Transactions on Information Theory, 49, 626–643.

    Article  MathSciNet  Google Scholar 

  6. Gallager, R. G. (1963). Low density parity check codes. Ph.D dissertation. MIT.

  7. Johnson, M., Ishwar, P., Prabhakaran, V. M., Schonberg, D., & Ramchandran, K. (2004). On compressing encrypted data. IEEE Transactions on Signal Processing, 52(10), 2992–3006.

    Article  MathSciNet  Google Scholar 

  8. Schonberg, D., Draper, S. C., & Ramchandran, K. (2005). On blind compression of encrypted correlated data approaching the source entropy rate. In Proceedings of 43rd Annual Allerton Conference, Allerton, IL, USA (pp. 1–4).

  9. Schonberg, D., Draper, S. C., & Ramchandran, K. (2006). On compression of encrypted images. In Proceedings of the IEEE international conference image processing (pp. 269–272).

  10. Schonberg, D., Draper, S. C., Yeo, C., & Ramchandran, K. (2008). Toward compression of encrypted images and video sequences. IEEE Transactions on Information Forensics and Security, 3(4), 749–762.

    Article  Google Scholar 

  11. Lazzeretti, R., & Barni, M. (2008). Lossless compression of encrypted gray-level and color images. In Proceedings of 16th European signal processing conference (pp. 1–5).

  12. Kumar, A., & Makur, A. (2010). Distributed source coding based encryption and lossless compression of gray scale and color images. In 2008 Proceedings of MMSP (pp. 760–764).

  13. Liu, W., Zeng, W., Dong, L., & Yao, Q. (2009). Efficient compression of encrypted gray scale images. IEEE Transactions on Signal Processing, 19(4), 1097–1102.

    MATH  Google Scholar 

  14. Zhou, J., Liu, X., & Rao, K. R. (2014). Designing an efficient image encryption-then-compression system via prediction error clustering and random permutation. IEEE Transactions on Information Forensics and Security, 9(1), 39–50.

    Article  Google Scholar 

  15. Klinc, D., Hazay, C., Jagmohan, A., Krawczyk, H., & Rabin, T. (2012). On compression of data encrypted with block ciphers. IEEE Transactions on Information Theory, 58(11), 6989–7001.

    Article  MathSciNet  Google Scholar 

  16. Kumar, A., & Makur, A. (2009). Lossy compression of encrypted image by compressing sensing technique. In Proceedings of TENCON2009 IEEE Region 10 conference (Vol. 23 (1), pp. 1–6).

  17. Zhang, X., Ren, Y., Shen, L., Qian, Z., & Feng, G. (2009). Compressing encrypted image using compressive sensing. In Proceedings of the IEEE data compressing conference (DCC) (pp. 213–222).

  18. Zhang, X. (2011). Lossy compression and iterative reconstruction for encrypted image. IEEE Transactions on Information Forensics and Security, 6(1), 53–58.

    Article  Google Scholar 

  19. Zhang, X., Feng, G., Ren, Y., & Qian, Z. (2012). Scalable coding of encrypted images. IEEE Transactions on Image Processing, 21(6), 3108–3114.

    Article  MathSciNet  Google Scholar 

  20. Zhang, X., Sun, G., Shen, L., & Qin, C. (2013). Compression of encrypted images with multilayer decomposition. IEEE Transactions on Signal Processing, 78(3), 1–13.

    Google Scholar 

  21. Zhang, X., Ren, Y., Shen, L., Qian, Z., & Feng, G. (2014). Compressing encrypted images with auxiliary information. IEEE Transactions on Multimedia, 16(5), 1327–1336.

    Article  Google Scholar 

  22. Wang, C., & Ni, J. (2015). Compressing encrypted images using the integer lifting wavelet. In Proceedings of the 11th international conference on intelligent information hiding and multimedia signal processing (pp. 409–412).

  23. Wang, C., Ni, J., & Huang, Q. (2015). A new encryption-then-compression algorithm using the rate–distortion optimization. Signal Processing: Image Communication, 39, 141–150.

    Google Scholar 

  24. Zhou, J., Au, O. C., Zhai, X., Tang, Y. Y., & Liu, X. (2014). Scalable compression of stream cipher encrypted images through context adaptive sampling. IEEE Transactions on Information Forensics and Security, 9(11), 1857–1868.

    Article  Google Scholar 

  25. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  Google Scholar 

  26. Candes, E. J., & Wakin, M. B. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.

    Article  Google Scholar 

  27. Li, S., Chen, G., Cheung, A., Bhargava, B., & Lo, K. T. (2007). On the design of perceptual MPEG-video encryption algorithms. IEEE Transactions on Circuits and Systems for Video Technology, 17(2), 214–223.

    Article  Google Scholar 

  28. Ahmed, F., Siyal, M. Y., & Abbas, V. U. (2010). A perceptually scalable and JPEG compression tolerant image encryption scheme. In Fourth Pacific-Rim symposium on image and video technology (pp. 232–238).

  29. Wu, Y., Noonan, J. P., & Agaian, S. (2011). NPCR and UACI randomness tests for image encryption. Cyber Journals: Multidisciplinary Journals in Science and Technology, 1, 31–38.

    Google Scholar 

  30. Potetz, B., & Lee, T. S. (2003). Statistical correlations between two-dimensional images and three-dimensional structures in natural scenes. Journal of the Optical Society of America, 20(7), 1292–1303.

    Article  Google Scholar 

  31. Nag, S. (2019). Vector quantization using the improved differential evolution algorithm for image compression. Genetic Programming and Evolvable Machines, 20(2), 187–212.

    Article  MathSciNet  Google Scholar 

  32. Brammya, G., Praveena, S., Ninu Preetha, N. S., Ramya, R., Rajakumar, B. R., & Binu, D. (2019). Deer hunting optimization algorithm: A new nature-inspired meta-heuristic paradigm. The Computer Journal. https://doi.org/10.1093/comjnl/bxy133.

    Article  Google Scholar 

  33. Kumar, M., & Vaish, A. (2016). An efficient compression of encrypted images using WDR coding. In Proceedings of fifth international conference on soft computing for problem solving (pp. 729–741). Berlin: Springer.

  34. Watanabe, O., Uchida, A., Fukuhara, T., & Kiya, H. (2015). An encryption-then-compression system for jpeg 2000 standard. In Proceedings of the IEEE international conference on acoustics speech and signal processing (ICASSP) (pp. 1226–1230).

  35. Kurihara, K., Shiota, S., & Kiya, H. (2015). An encryption-then-compression system for jpeg standard. In Proceedings of picture coding symposium (PCS) (pp. 119–123).

  36. Kurihara, K., Kikuchi, M., Imaizumi, S., Shiota, S., & Kiya, H. (2015). An encryption-then-compression system for jpeg/motion jpeg standard. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences., 98(11), 2238–2245.

    Article  Google Scholar 

  37. Kurihara, K., Watanabe, O., & Kiya, H. (2016). An encryption-then-compression system for jpeg xr standard. In Proceedings of the IEEE international symposium on broadb and multimedia systems and broadcasting (BMSB) (pp. 1–5).

  38. Kurihara, K., Imaizumi, S., Shiota, S., & Kiya, H. (2017). An encryption-then-compression system for lossless image compression standards. IEEE Transactions on Information and Systems, 100-D(1), 52–56.

    Article  Google Scholar 

  39. Liu, T. Y., Lin, K. J., & Wu, H. C. (2018). ECG data encryption then compression using singular value decomposition. IEEE Journal of Biomedical and Health Informatics, 22(3), 707–713.

  40. Lahdir, M., Hamiche, H., Kassim, S., Tahanout, M., Kemih, K., & Addouche, S. A. (2019). A novel robust compression-encryption of images based on SPIHT coding and fractional-order discrete-time chaotic system. Optics & Laser Technology, 109, 534–546.

    Article  Google Scholar 

  41. Darwish, S. M. (2019). A modified image selective encryption-compression technique based on 3D chaotic maps and arithmetic coding. Multimedia Tools and Applications, 78(14), 19229–19252.

    Article  Google Scholar 

  42. Hilles, S. M., & Salem, M. A. (2018). Selective image encryption and compression technique. Arrasikhun Journal, 4(1), 39–42.

    Google Scholar 

  43. Wang, C., Ni, J., Zhang, X., & Huang, Q. (2017). Efficient compression of encrypted binary images using the Markov random field. IEEE Transactions on Information Forensics and Security, 13(5), 1271–1285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Suguna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suguna, T., Shanmugalakshmi, R. Secure Image Communication Through Adaptive Deer Hunting Optimization Based Vector Quantization Coding of Perceptually Encrypted Images. Wireless Pers Commun 116, 2239–2260 (2021). https://doi.org/10.1007/s11277-020-07789-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07789-y

Keywords

Navigation