Skip to main content
Log in

Joint Angle and Range Estimation in the Fda-Mimo Radar: The Reduced-Dimension Root Music Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The frequency diverse array (FDA) multiple-input multiple-output (MIMO) radar is capable of producing the angle-range-dependent beampattern by utilizing a small frequency increment across the transmit elements, which enables to jointly calculate the angle and range estimates of the targets. However, the methods with tremendous computational burden, e.g., two-dimensional (2D) spectrum peak search (SPS), are involved due to the coupling of parameters, i.e., angle and range. In this study, We propose a reduced-dimension root MUSIC (RD-root-MUSIC) algorithm to detect the angle and range of targets in the FDA-MIMO radar. Specifically, we firstly decompose the angle and range by reconstructing the 2D-MUSIC spatial spectrum, where, resultantly, the range component is dismissed and the angle-dependent spatial spectrum function can be achieved. Moreover, to circumvent the SPS, the polynomial root finding is employed to obtain the angle estimates. Furthermore, we derive the closed-form solution to the range estimates which can be directly calculated based on the angle estimates. The proposed algorithm remarkably reduces the computational complexity without estimation performance degradation. In addition, the Cramér-Rao bounds (CRBs) are presented and the simulation results are provided to demonstrated the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fishler, E., Haimovich, A., Blum, R., Chizhik, D., Cimini, L., & Valenzuela, R. (2004). MIMO radar: An idea whose time has come. In: Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509), 71–78

  2. Li, J., & Stoica, P. (2007). MIMO radar with colocated antennas. IEEE Signal Processing Magazine, 24(5), 106–114.

    Article  Google Scholar 

  3. Bekkerman, I., & Tabrikian, J. (2006). Target detection and localization using MIMO radars and sonars. IEEE Transactions on Signal Processing, 54(10), 3873–3883.

    Article  Google Scholar 

  4. Liu, J., Zhou, W., & Juwono, F. H. (2017). Reweighted smoothed l0-norm based DOA estimation for MIMO radar. Signal Proc., 137, 44–51.

    Article  Google Scholar 

  5. Zhang, J., Zhang, L., & Liu, N. (2009). Maximum likelihood DOA estimation of MIMO radar. System Engineering and Electronics, 31(6), 1292–1294.

    MathSciNet  Google Scholar 

  6. Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Article  Google Scholar 

  7. Yan, H., Li, J., & Liao, G. (2007). Multitarget identification and localization using bistatic MIMO radar systems. EURASIP J. Adv. Signal Process, Article ID283483 (2007), 1–8.

  8. Xia, W., & He, Z. (2008). Multiple-target localization and estimation of MIMO radars using Capon and APES techniques. 2008 IEEE Radar Conf., 1–6.

  9. Zhang, X., & Xu, D. (2010). Angle estimation in MIMO radar using reduced-dimension Capon. Electronics Letters, 46(12), 860–861.

    Article  Google Scholar 

  10. Zhang, X., & Xu, D. (2011). Low-complexity ESPRIT-based DOA estimation for colocated MIMO radar using reduced-dimension transformation. Electronics Letters, 47(4), 283–284.

    Article  Google Scholar 

  11. Zheng, G., Tang, J., & Yang, X. (2016). ESPRIT and unitary ESPRIT algorithms for coexistence of circular and noncircular signals in bistatic MIMO Radar. IEEE Access, 4, 723–7240.

    Google Scholar 

  12. Nion, D., & Sidiropoulos, N. D. (2009). A PARAFAC based technique for detection and localization of multiple targets in a MIMO radar system. 2009 IEEE international conference on acoustics, speech, and signal processing (ICASSP), 2070–2080.

  13. Li, J. F., & Jiang, D. F. (2018). Low-complexity propagator based two dimensional angle estimation for coprime MIMO radar. IEEE Access, 6, 13931–13938.

    Article  Google Scholar 

  14. Cao, R. Z., Zhang, X. F., & Chen, W. Y. (2014). Compressed sensing parallel factor analysis-based joint angle and Doppler frequency estimation for monostatic multiple inputmultiple output radar. IET Rad. Sonar Nav., 8(6), 597–606.

    Article  Google Scholar 

  15. Wang, W. Q. (2013). Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays. IEEE Transactions on Antennas and Propagation, 61(8), 4073–4081.

    Article  MathSciNet  Google Scholar 

  16. Li, B. B., Bai, W. X., & Zheng, G. M. (2018). Successive ESPRIT algorithm for joint DOA-range-polarization estimation with polarization sensitive FDA-MIMO radar. IEEE Access, 6, 36376–36382.

    Article  Google Scholar 

  17. Wang, W. Q., & So, H. C. (2014). Transmit subaperturing for range and angle estimation in frequency diverse array radar. IEEE Transactions on Signal Processing, 62(8), 2000–2011.

    Article  MathSciNet  Google Scholar 

  18. Zhang, X. F., Xu, L. Y., Xu, L., & Xu, D. Z. (2010). Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC. IEEE Communications Letters, 12, 1161–1163.

    Article  Google Scholar 

  19. Xu, J. W., Liao, G. S., Zhu, S. Q., Huang, L., & So, H. C. (2015). Joint range and angle estimation using MIMO radar with frequency diverse array. IEEE Transactions on Signal Processing, 63(13), 3396–3410.

    Article  MathSciNet  Google Scholar 

  20. Sammartino, P. F., Baker, C. J., & Griffiths, H. D. (2013). Frequency diverse MIMO techniques for radar. IEEE Transactions on Aerospace and Electronic Systems, 49(1), 201–222.

    Article  Google Scholar 

  21. Meyer, C. D. (2000). Matrix analysis and applied linear algebra. Philadelphia. PA, USA: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  22. Ahmed, S. (2014). Product-based pulse integration to combat noise jamming. IEEE Transactions on Aerospace and Electronic Systems, 50(3), 2109–2115.

    Article  Google Scholar 

  23. Zheng, W., Zhang, X. F., & Shi, Z. (2017). Two-dimensional direction of arrival estimation for coprime planar arrays via a computationally efficient one-dimensional partial spectral search approach. IET Radar Sonar Navigation, 11(10), 1581–1588.

    Article  Google Scholar 

  24. Li, J. F., & Zhang, X. F. (2014). Unitary reduced-dimensional estimation of signal parameters via rotational invariance techniques for angle estimation in monostatic multiple input multiple output radar with rectangular arrays. IET Radar Sonar and Navigat, 8(6), 575–584.

    Article  Google Scholar 

  25. Zhang, D., Zhang, Y. S., & Zheng, G. M. (2018). Two dimensional direction of arrival estimation for coprime planar arrays via polynomial root finding technique. IEEE Access, 6, 19540–19549.

    Article  Google Scholar 

  26. Zhang, Z., Wang, W., Huang, Y., & Liu, S. (2017). Decoupled 2D direction of arrival estimation in L-shaped array. IEEE Communications Letters, 21(9), 1989–1992.

    Article  Google Scholar 

  27. Zhang, C., Huang, H., & Liao, B. (2017). Direction finding in MIMO radar with unknown mutual coupling. IEEE Access, 5, 4439–4447.

    Article  Google Scholar 

  28. Di, A. (1985). Multiple source location: A matrix decomposition approach. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(5), 1086–1091.

    Article  Google Scholar 

  29. Huang, L., Long, T., & Mao, E. (2009). MMSE based MDL method for robust estimation of number of sources without eigen-decomposition. IEEE Transactions on Signal Processing, 57(10), 4135–4142.

    Article  MathSciNet  Google Scholar 

  30. Jie, X., Wang, W. Q., & Gao, K. D. (2018). FDA-MIMO radar range angle estimation: CRLB, MSE, and resolution analysis. IEEE Transactions on Aerospace and Electronic Systems, 54(1), 284–294.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by China NSF Grants (61601167, 61971217, 61971218, 61631020), the fund of Sonar Technology Key Laboratory (Research on the theory and algorithm of signal processing for two-dimensional underwater acoustics coprime array, Range estimation and location technology of passive target via multiple array combination), the Fundamental Research Funds for the Central Universities (NT2019013) and the Research and practice innovation program for Postgraduates in Jiangsu Province (KYCX20_0203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zheng, W., Gong, P. et al. Joint Angle and Range Estimation in the Fda-Mimo Radar: The Reduced-Dimension Root Music Algorithm. Wireless Pers Commun 115, 2515–2533 (2020). https://doi.org/10.1007/s11277-020-07694-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07694-4

Keywords

Navigation