Skip to main content
Log in

A Quad Band Metamaterial Miniaturized Antenna for Wireless Applications with Gain Enhancement

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a designing of dual-coated miniaturized metamaterial inspired quad band antenna for wireless standards with gain enhancement. Proposed design has compactness in size with electrical dimension of 0.239 × 0.351 × 0.0127 λ (30 × 44 × 1.6 mm3), at lower frequency of 2.39 GHz. The antenna consist a double printed slotted hexagonal shape radiating section with implementation of metamaterial rectangular split ring resonator. Antenna achieve quad bands for wireless standards WLAN (2.4/5.8 GHz), WiMAX (3.5 GHz), IEEE 802.11P (WAVE-5.9 GHz), ITU assigned X bands (7.25–7.75, 7.9–8.4 GHz) and satellite communication systems operating bands (C-band: 7.4–8.9 GHz and X-band: 8–10 GHz for satellite TV). An acceptable gain, stable radiation characteristics and good impedance matching are observed at all the resonant frequencies of the proposed structure. By application of proposed frequency selective surface an average enhancement of gain is about 4–5 dB over the operating band. Antenna fabricated and tested represent good agreement between the simulated and measured results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14.
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ghatak, R., Mishra, R., & Poddar, D. (2008). Perturbed Sierpinski carpet antenna with CPW feed for IEEE 802.11a/b WLAN application. IEEE Antennas and Wireless Propagation Letters, 7, 742–745.

    Article  Google Scholar 

  2. Xu, Y., Jiao, Y. C., & Luan, Y. C. (2012). Compact CPW-fed printed monopole antenna with triple band characteristics for WLAN/WiMAX applications. Electronics Letters, 48(24), 1519–1520.

    Article  Google Scholar 

  3. Sim, C. Y. D., Chen, H. D., Chiu, K. C., & Chao, C. H. (2012). Coplanar waveguide fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications. IET Microwaves, Antennas and Propagation, 6(14), 1529–1535.

    Article  Google Scholar 

  4. Li, X., Shi, X. W., Hu, W., Fei, P., & Yu, J. F. (2013). Compact triband ACS fed monopole antenna employing open ended slots for wireless communication. IEEE Antennas and Wireless Propagation Letters, 12, 388–391.

    Article  Google Scholar 

  5. Basaran, S., Olgun, U., & Sertel, K. (2013). Multiband monopole antenna with complementary split ring resonators for WLAN and WiMAX applications. Electronics Letters, 49(10), 636–638.

    Article  Google Scholar 

  6. Xu, H. X., Wang, G. M., & Qi, M. Q. (2013). A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity. Progress in Electromagnetics Research, 137, 275–292.

    Article  Google Scholar 

  7. Saraswat, R., & Kumar, M. (2016). Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications. Progress in Electromagnetics Research B, 65, 65–80.

    Article  Google Scholar 

  8. Zhu, J., & Eleftheriades, G. V. (2009). Dual band metamaterial inspired small monopole antenna for WiFi applications. Electronics Letters, 45(22), 1104–1106.

    Article  Google Scholar 

  9. Xiong, J., Li, H., Jin, Y., & He, S. (2009). Modified TM020 mode of a rectangular patch antenna partially loaded with metamaterial for dual band applications. IEEE Antennas and Wireless Propagation Letters, 8, 1006–1009.

    Article  Google Scholar 

  10. Dong, Y., Toyao, H., & Itoh, T. (2012). Design and characterization of miniaturized patch antennas loaded with complementary split ring resonators. IEEE Transactions on Antennas and Propagation, 60(2), 772–785.

    Article  Google Scholar 

  11. CST (Microwave Studio MWS) ver. 2014, Computer Simulation Technology.

  12. Kushwaha, N., & Kumar, R. (2013). Design of slotted ground hexagonal microstrip patch antenna and gain improvement with FSS screen. Progress in Electromagnetics Research B, 51, 177–199.

    Article  Google Scholar 

  13. Smith, D. R., Schultz, S., Markos, P., & Soukoulis, C. M. (2002). Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients. Physical Review B, 65, 195104–195109.

    Article  Google Scholar 

  14. Chen, H., Zhang, J., Bai, Y., Luo, Y., Ran, L., Jiang, Q., et al. (2006). Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Optics Express, 14(26), 12944–12949.

    Article  Google Scholar 

  15. Saha, C., & Siddiqui, J. Y. (2011). Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators. International Journal of RF and Microwave Computer-Aided Engineering, 21, 432–438.

    Article  Google Scholar 

  16. Rahimi, M., Zarrabi, F. B., Ahmadian, R., Mansouri, Z., & Keshtkar, A. (2014). Miniaturization of antenna for wireless application with difference metamaterial structures. Progress in Electromagnetics Research, 145, 19–29.

    Article  Google Scholar 

  17. Saraswat, R., & Kumar, M. (2015). A frequency band reconfigurable UWB antenna for high gain applications. Progress in Electromagnetics Research B, 64, 29–45.

    Article  Google Scholar 

  18. Xu, H. X., Wang, G. M., Lv, Y. Y., Qi, M. Q., Gao, X., & Ge, S. (2013). Multi frequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit. Progress in Electromagnetics Research, 137, 703–725.

    Article  Google Scholar 

  19. Samsuzzaman, M., Islam, T., Abd Rahman, N. H., Faruque, M. R. I., & Mandeep, J. S. (2014). Compact modified Swastika shape patch antenna for WLAN/WiMAX applications. International Journal of Antennas and Propagation, 2014, 1–8.

    Google Scholar 

  20. Cao, Y. F., Cheung, S. W., & Yuk, T. I. (2015). A multiband slot antenna for GPS/WiMAX/WLAN Systems. IEEE Transactions on Antennas and Propagation, 63(3), 952–958.

    Article  MathSciNet  Google Scholar 

  21. Ahsan, M d R, Islam, T., & Ullah, M d H. (2015). Computational and experimental analysis of high gain antenna for WLAN/WiMAX applications. Journal of Computational Electronics, 14(2), 634–641.

    Article  Google Scholar 

  22. Alam, T., Samsuzzaman, M., Faruque, M., & Islam, M. T. (2016). A metamaterial unit cell inspired antenna for mobile wireless applications. Microwave and Optical Technology Letters, 58(2), 263–267.

    Article  Google Scholar 

  23. Rajabloo, H., Kooshki, V. A., & Oraizi, H. (2017). Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application. AEU-International Journal of Electronics and Communications, 73, 144–149.

    Article  Google Scholar 

  24. Vinodha, E., & Raghavan, S. (2017). Double stub microstrip fed two element rectangular dielectric resonator antenna for multiband operation. AEU-International Journal of Electronics and Communications, 78, 46–53.

    Article  Google Scholar 

  25. Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification. AEU-International Journal of Electronics and Communications, 83, 213–221.

    Article  Google Scholar 

  26. Jindal, S., Sivia, J. S., & Bindra, H. S. (2019). Hybrid fractal antenna using Meander and Minkowski curves for wireless applications. Wireless Personal Communications, 109(4), 1471–1490.

    Article  Google Scholar 

  27. Kaur, M., & Sivia, J. S. (2019). Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm. International Journal of RF and Microwave Computer-Aided Engineering, 30(1), 1–11.

    Google Scholar 

  28. Kaur, M., & Sivia, J. S. (2019). Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU-International Journal of Electronics and Communications, 99, 14–24.

    Article  Google Scholar 

  29. Langley, R. J., & Parker, E. A. (1982). Equivalent-circuit model for arrays of square loops. Electronics Letters, 18, 294–296.

    Article  Google Scholar 

  30. Chung, Y. C., Lee, K. W., Hong, I. P., Lee, M. G., Chun, H. J., & Yook, J. G. (2011). Simple prediction of FSS radome transmission characteristics using an FSS equivalent circuit model. IEICE Electron Express, 8(2), 89–95.

    Article  Google Scholar 

  31. Kushwaha, N., Kumar, R., Ram Krishna, R. V. S., & Oli, T. (2014). Design and analysis of new compact UWB frequency selective surface and its equivalent circuit. Progress in Electromagnetics Research C, 46, 31–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar Saraswat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswat, R.K., Kumar, M. A Quad Band Metamaterial Miniaturized Antenna for Wireless Applications with Gain Enhancement. Wireless Pers Commun 114, 3595–3612 (2020). https://doi.org/10.1007/s11277-020-07548-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07548-z

Keywords

Navigation