Skip to main content
Log in

Combined Inter-layer FEC and Hierarchical QAM for Stereoscopic 3D Video Transmission

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We consider an inter-layer FEC (IL-FEC) technique combined with hierarchical QAM for an efficient and reliable transmission of stereoscopic 3D video. The transmit sources are left and right video streams, and one of them is considered a more important stream for guarantee of conventional 2D service. The source node transmits both left and right videos to a destination node by using the IL-FEC and hierarchical 16QAM schemes, in which video peak signal-to-noise ratio (PSNR) performance varies with the hierarchical value \((\alpha )\). In this paper, we present the suitable hierarchical values to achieve the target PSNR performances even in low SNR environment. Numerical simulation results show that the proposed system using IL-FEC and hierarchial 16QAM schemes with the suitable \(\alpha\) value can gain about 7.3–9.3 dB in the average PSNR performance, compared with the system using IL-FEC and conventional 16QAM schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Merkle, P., Muller, K., & Wiegand, T. (2010). 3D video: Acquisition, coding, and display. IEEE Transactions on Consumer Electronics, 56(2), 946–950.

    Article  Google Scholar 

  2. Fehn, C. (2004). Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV. In Proceedings of SPIE stereoscopic displays and virtual reality system XI (Vol. 5291, pp. 93–104).

  3. Vetro, A., Wiegand, T., & Sullivan, G. J. (2011). Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard. Proceedings of the IEEE, 99(4), 626–642.

    Article  Google Scholar 

  4. Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1103–1120.

    Article  Google Scholar 

  5. Wiegand, T., Sullivan, G. J., Bjontegaard, G., & Luthra, A. (2003). Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 560–576.

    Article  Google Scholar 

  6. Merkle, P., Smolic, A., Muller, K., & Wiegand, T. (2007). Multi-view video plus depth representation and coding. In Proceedings of IEEE international conference on image processing (ICIP) 2007.

  7. Schertz, A., & Weck, C. (2003). Hierarchical modulation—The transmission of two independent DVB-T multiplexes on a single frequency. EBU Technical Review, 294(13), 94–102.

    Google Scholar 

  8. Barmada, B., Ghandi, M. M., Jones, E. V., & Ghanbari, M. (2006). Combined turbo coding and hierarchical QAM for unequal error protection of H.264 coded video. Signal Processing: Image Communication, 21, 390–395.

    Google Scholar 

  9. Salim, O. H., Xianga, W., Leis, J., & Cao, L. (2014). Cross-layer optimization for 3-D video transmission over cooperative relay systems. Signal Processing: Image Communication, 29(10), 1102–1120.

    Google Scholar 

  10. Huo, Y., Zuo, X., Maunder, R. G., & Hanzo, L. (2012). Inter-layer FEC decoded multi-layer video streaming. In Proceedings of IEEE global communications conference (GLOBECOM) 2012.

  11. Huo, Y., El-Hajjar, M., Maunder, R. G., & Hanzo, L. (2014). Layered wireless video relying on minimum-distortion inter-layer FEC coding. IEEE Transactions on Multimedia, 16(3), 697–710.

    Article  Google Scholar 

  12. Sklar, B. (1997). A primer on turbo code concepts. IEEE Communications Magazine, 35(12), 94–102.

    Article  Google Scholar 

  13. Alajel, K. M., Xiang, W., & Wang, Y. (2012). Unequal error protection scheme based hierarchical 16-QAM for 3D video transmission. IEEE Transactions on Consumer Electronics, 58(3), 731–738.

    Article  Google Scholar 

  14. Ghandi, M. M., & Ghanbari, M. (2006). Layered H.264 video transmission with hierarchical QAM. Journal of Visual Communication and Image Representation, 17(2), 451–466.

    Article  Google Scholar 

  15. Chang, Y. C., Lee, S. W., & Komiya, R. (2009). A low complexity hierarchical QAM symbol bits allocation algorithm for unequal error protection of wireless video transmission. IEEE Transactions on Consumer Electronics, 55(3), 1089–1097.

    Article  Google Scholar 

  16. You, D., & Kim, D. H. (2016). Hierarchical modulation for client-driven selective streaming of multi-view video over AWGN channels. Signal Processing: Image Communication, 47, 152–159.

    Google Scholar 

  17. Huynh-Thu, Q., & Ghanbari, M. (2008). Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 44(13), 800–801.

    Article  Google Scholar 

  18. You, D., & Kim, D. H. (2017). Stereoscopic video transmission using inter-layer FEC and hierarchical QAM over relay channels. In Proceedings of IEEE international conference on consumer electronics, Berlin (ICCE-Berlin) 2017.

  19. Huynh-Thu, Q., & Ghanbari, M. (2008). Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 44(13), 800–801.

    Article  Google Scholar 

  20. 3rd generation partnership project; technical specification group radio access network; multiplexing and channel coding (release 7), 3GPP Organizational Partners Technical Report.

  21. Vitthaladevuni, P. K., & Alouini, M.-S. (2001). BER computation of 4/M-QAM hierarchical constellations. IEEE Transactions on Broadcasting, 47(3), 228–239.

    Article  Google Scholar 

  22. Yim, Z., & Jeon, S. (2011). Normalization factor of hierarchically modulated symbols for advanced T-DMB system. IEEE Transactions on Broadcasting, 57(3), 713–717.

    Article  Google Scholar 

  23. You, D., & Kim, D. (2016). Normalization factor for three-level hierarchical 64QAM scheme. The Journal of Korean Institute of Communications and Information Sciences, 41(1), 77–79.

    Article  Google Scholar 

  24. Bahl, L. R., Cocke, J., Jelinek, F., & Raviv, J. (1974). Optimal decodinf of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory, 20(3), 284–287.

    Article  Google Scholar 

  25. Hagenauer, J., Offer, E., & Papke, L. (1996). Iterative decoding of binary block and convolutional codes. IEEE Transactions on Information Theory, 42(2), 429–445.

    Article  Google Scholar 

  26. Zhoua, W., Jianga, G., Yua, M., Shaoa, F., & Penga, Z. (2014). Reduced-reference stereoscopic image quality assessment based on view and disparity zero-watermarks. Signal Processing: Image Communication, 29(1), 167–176.

    Google Scholar 

  27. Hanhart, P., & Ebrahimi, T. (2014). Calculation of average coding efficiency based on subjective quality scores. Journal of Visual Communication and Image Representation, 25(3), 555–564.

    Article  Google Scholar 

  28. Vetro, A., McGuire, M., Matusik, Behrens, W. A., Lee, J., & Pfister, H. Multiview video test sequences from MERL, ISO/IEC JTC1/SG29/WG11, Document MPEG2005/M12077.

  29. Song, D., & Chen, C. W. (2007). Scalable H.264/AVC video transmission over mimo wireless systems with adaptive channel selection based on partial channel information. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1218–1226.

    Article  Google Scholar 

  30. Wedi, T., & Musmann, H. G. (2003). Motion- and aliasing-compensated prediction for hybrid video coding. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 577–586.

    Article  Google Scholar 

  31. Nguyen, T. V., Cosman, P. C., & Milstein, L. B. (2014). Double-layet video transmission over decode-and-forward wireless relay networks using hierarchical modulation. IEEE Transactions on Image Processing, 23(4), 1791–1804.

    Article  MathSciNet  Google Scholar 

  32. Tosato, F., & Bisaglia, P. (2002). Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2. In Proceedings of IEEE international conference on communications (ICC) 2002.

Download references

Acknowledgements

This work was supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea Government (MSIT) (No. 2016-0-00144, Moving Free-viewpoint 360VR Immersive Media System Design and Component Technologies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ho Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix on the simplified LLR computation for hierarchical 16QAM is based on a study of [32]. Figure 3 shows the hierarchical 16QAM constellation, in which it is well known that the four bits in each constellation point can be considered as two bits each on independent 4PAM modulation on real-axis (I) and imaginary-axis (Q), respectively. The mapping for hierarchical is shown in Table 1, where \(b_1={c_1^{(2{m_n} - 1)}}\) and \(b_3={c_1^{2{m_n}}}\) denote HP codeword bits, and \(b_2={c_{12}^{(2{m_n} - 1)}}\) and \(b_4={c_{12}^{2{m_n}}}\) denote LP codeword bits. The m-th received symbol \({y_m} = {x_m} + {w_m}\), where \({x_m}\) is the m-th transmitted symbol and \({w_m}\) is the AWGN following the probability distribution function,

$$\begin{aligned} p({w_m}) = \frac{1}{{\sqrt{2\pi {\sigma ^2}} }}{e^{\frac{{ - {{({w_m} - \mu )}^2}}}{{2{\sigma ^2}}}}} \end{aligned}$$
(13)

where mean \(\mu =0\) and variance \(\sigma ^2=N_0/2\). For the hierarchical 16QAM de-mapper, the the probability that the bits \(b_r\,(r=1,2,3,4)\) was transmitted when the received symbol vector \({y_m}\) is given, i.e. \(P(b_r|{y_m})\). The probability can be rewritten by using Bayes rule as follows:

$$\begin{aligned} {P(b_r|{y_m})}=\frac{{P(b_r|{y_m})}{p(b_r)}}{p({y_m})} \end{aligned}$$
(14)

It is well known that maximizing \({P(b_r|{y_m})}\) is equivalent to maximizing \(P({y_m}|b_r)\) because the probability of all constellation points is the same.

Table 1 Constellation mapping for hierarchical 16QAM

1.1 LLR Computation for HP bits

The bit mapping for the HP bits, i.e. \(b_1\) and \(b_3\), is shown in Fig. 8a. Since the mapping rules for \(b_1\) and \(b_3\) are the same, only the mapping for \(b_1\) is considered. The likelihood ratio for \(b_1\) is as follows:

$$\begin{aligned} \frac{{P\left( {y_m|{b_1} = 0} \right) }}{{P\left( {y_m|{b_1} = 1} \right) }} = \frac{{{e^{\frac{{ - {{\left( {y_m - \left( {{d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}} + {e^{\frac{{ - {{\left( {y_m - \left( {{d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}{{{e^{\frac{{ - {{\left( {y_m - \left( { - {d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}} + {e^{\frac{{ - {{\left( {y_m - \left( { - {d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}. \end{aligned}$$
(15)
Fig. 8
figure 8

Hierarchical 16QAM constellation mapping for a HP bit and b LP bit

When \(y_m < - {d_1}\), i.e. Region #1, we can assume that relative contribution by constellation \(d_1+d_2\) in the numerator and \(-d_1+d_2\) in the denominator is less. Therefore, these can be ignored, and be expressed as

$$\begin{aligned} \frac{{P\left( {y_m|{b_1} = 0} \right) }}{{P\left( {y_m|{b_1} = 1} \right) }} \approx \frac{{{e^{\frac{{ - {{\left( {y_m - \left( {{d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}{{{e^{\frac{{ - {{\left( {y_m - \left( { - {d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}. \end{aligned}$$
(16)

Taking logarithm on both side,

$$\begin{aligned}&\ln \left( {\frac{{P\left( {y_m|{b_1} = 0} \right) }}{{P\left( {y_m|{b_1} = 1} \right) }}} \right) \approx \ln \left( {\frac{{{e^{\frac{{ - {{\left( {y_m - \left( {{d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}{{{e^{\frac{{ - {{\left( {y_m - \left( { - {d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}} \right) \nonumber \\&\quad = \frac{1}{{2{\sigma ^2}}}\left\{ {{{\left( {y_m- \left( { - {d_1} - {d_2}} \right) } \right) }^2} - {{\left( {y_m - \left( { - {d_1} + {d_2}} \right) } \right) }^2}} \right\} \nonumber \\&\quad = \frac{1}{{{\sigma ^2}}}2{d_1}\left( {y_m + {d_2}} \right) \end{aligned}$$
(17)

When \(- {d_1} \le y_m < +{d_1}\), i.e. Region #2 and #3, we can assume that relative contribution by constellation \(d_1+d_2\) in the numerator and \(-d_1-d_2\) in the denominator is less. Therefore, these can be ignored, and be expressed as

$$\begin{aligned} \frac{{P\left( {y_m|{b_1} = 0} \right) }}{{P\left( {y_m|{b_1} = 1} \right) }} \approx \frac{{{e^{\frac{{ - {{\left( {y_m - \left( {{d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}{{{e^{\frac{{ - {{\left( {y_m - \left( { - {d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}. \end{aligned}$$
(18)

Taking logarithm on both side,

$$\begin{aligned}&\ln \left( {\frac{{P\left( {y_m|{b_1} = 0} \right) }}{{P\left( {y_m|{b_1} = 1} \right) }}} \right) \approx \ln \left( {\frac{{{e^{\frac{{ - {{\left( {y_m - \left( {{d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}{{{e^{\frac{{ - {{\left( {y_m - \left( { - {d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}} \right) \nonumber \\&\quad = \frac{1}{{2{\sigma ^2}}}\left\{ {{{\left( {y_m - \left( { - {d_1} + {d_2}} \right) } \right) }^2} - {{\left( {y_m - \left( {{d_1} - {d_2}} \right) } \right) }^2}} \right\} \nonumber \\&\quad = \frac{1}{{{\sigma ^2}}}2y_m\left( {{d_1} - {d_2}} \right) \end{aligned}$$
(19)

When \(y_m \ge + {d_1}\), i.e. Region #4, we can assume that relative contribution by constellation \(d_1-d_2\) in the numerator and \(-d_1-d_2\) in the denominator is less. Therefore, these can be ignored, and be expressed as

$$\begin{aligned} \frac{{P\left( {y_m|{b_1} = 0} \right) }}{{P\left( {y_m|{b_1} = 1} \right) }} \approx \frac{{{e^{\frac{{ - {{\left( {y_m - \left( {{d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}{{{e^{\frac{{ - {{\left( {y_m - \left( { - {d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}. \end{aligned}$$
(20)

Taking logarithm on both side,

$$\begin{aligned}&\ln \left( {\frac{{P\left( {y_m|{b_1} = 0} \right) }}{{P\left( {y_m|{b_1} = 1} \right) }}} \right) \approx \ln \left( {\frac{{{e^{\frac{{ - {{\left( {y_m - \left( {{d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}{{{e^{\frac{{ - {{\left( {y_m - \left( { - {d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}} \right) \nonumber \\&\quad = \frac{1}{{2{\sigma ^2}}}\left\{ {{{\left( {y_m - \left( { - {d_1} + {d_2}} \right) } \right) }^2} - {{\left( {y_m - \left( {{d_1} + {d_2}} \right) } \right) }^2}} \right\} \nonumber \\&\quad = \frac{1}{{{\sigma ^2}}}2{d_1}\left( {y_m - {d_2}} \right) \end{aligned}$$
(21)

1.2 LLR Computation for LP bits

The bit mapping for the LP bits, i.e. \(b_2\) and \(b_4\), is shown in Fig. 8b. Since the mapping rules for \(b_2\) and \(b_4\) are the same, only the mapping for \(b_2\) is considered. The likelihood ratio for \(b_2\) is as follows:

$$\begin{aligned} \frac{{P\left( {y_m|{b_2} = 0} \right) }}{{P\left( {y_m|{b_2} = 1} \right) }} = \frac{{{e^{\frac{{ - {{\left( {y_m - \left( {-{d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}} + {e^{\frac{{ - {{\left( {y_m - \left( {{d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}{{{e^{\frac{{ - {{\left( {y_m - \left( { - {d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}} + {e^{\frac{{ - {{\left( {y_m - \left( { {d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}. \end{aligned}$$
(22)

When \(y_m < 0\), i.e. Region #1 and #2, we can assume that relative contribution by constellation \(d_1+d_2\) in the numerator and \(d_1-d_2\) in the denominator is less. Therefore, these can be ignored, and be expressed as

$$\begin{aligned} \frac{{P\left( {y_m|{b_1} = 0} \right) }}{{P\left( {y_m|{b_1} = 1} \right) }} \approx \frac{{{e^{\frac{{ - {{\left( {y_m - \left( {-{d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}{{{e^{\frac{{ - {{\left( {y_m - \left( { - {d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}. \end{aligned}$$
(23)

Taking logarithm on both side,

$$\begin{aligned}&\ln \left( {\frac{{P\left( {y_m|{b_1} = 0} \right) }}{{P\left( {y_m|{b_1} = 1} \right) }}} \right) \approx \ln \left( {\frac{{{e^{\frac{{ - {{\left( {y_m - \left( { - {d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}{{{e^{\frac{{ - {{\left( {y_m - \left( { - {d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}} \right) \nonumber \\&\quad = \frac{1}{{2{\sigma ^2}}}\left\{ {{{\left( {y_m - \left( { - {d_1} - {d_2}} \right) } \right) }^2} - {{\left( {y_m - \left( { - {d_1} + {d_2}} \right) } \right) }^2}} \right\} \nonumber \\&\quad = \frac{1}{{{\sigma ^2}}}2{d_2}\left( {y_m + {d_1}} \right) \end{aligned}$$
(24)

When \(y_m \ge 0\), i.e. Region #3 and #4, we can assume that relative contribution by constellation \(-d_1+d_2\) in the numerator and \(-d_1-d_2\) in the denominator is less. Therefore, these can be ignored, and be expressed as

$$\begin{aligned} \frac{{P\left( {y_m|{b_1} = 0} \right) }}{{P\left( {y_m|{b_1} = 1} \right) }} \approx \frac{{{e^{\frac{{ - {{\left( {y_m - \left( {{d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}{{{e^{\frac{{ - {{\left( {y_m - \left( { {d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}. \end{aligned}$$
(25)

Taking logarithm on both side,

$$\begin{aligned}&\ln \left( {\frac{{P\left( {y_m|{b_1} = 0} \right) }}{{P\left( {y_m|{b_1} = 1} \right) }}} \right) \approx \ln \left( {\frac{{{e^{\frac{{ - {{\left( {y_m - \left( {{d_1} - {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}{{{e^{\frac{{ - {{\left( {y_m - \left( {{d_1} + {d_2}} \right) } \right) }^2}}}{{2{\sigma ^2}}}}}}}} \right) \nonumber \\&\quad = \frac{1}{{2{\sigma ^2}}}\left\{ {{{\left( {y_m - \left( {{d_1} + {d_2}} \right) } \right) }^2} - {{\left( {y_m - \left( {{d_1} - {d_2}} \right) } \right) }^2}} \right\} \nonumber \\&\quad = \frac{1}{{{\sigma ^2}}}2{d_2}\left( { - y_m + {d_1}} \right) \end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, D., Kim, D.H. Combined Inter-layer FEC and Hierarchical QAM for Stereoscopic 3D Video Transmission. Wireless Pers Commun 110, 1619–1636 (2020). https://doi.org/10.1007/s11277-019-06804-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06804-1

Keywords

Navigation