Skip to main content
Log in

Closed-Form Analysis of Various Diversity Techniques for Multiband OFDM UWB System Over Log-Normal Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the effect of multipath fading on the combined signal-to-noise ratio (SNR) in conjunction with multiband orthogonal frequency division multiplexing ultra-wideband system with different diversity schemes such as maximal ratio combining, equal gain combining and selection combining. In particular, we derived the probability density function of the combiner output SNR followed by performance measures, average combined SNR, outage probability and average bit error rate, in the case of L-fold log-normal fading channels. The derived mathematical expressions are illustrated by applying the method to some selected numerical examples of interest showing the impact of fading variance as-well-as a number of diversity paths, which is combined, on the performance metrics of combiner output for above diversity techniques. The results show that the number of diversity paths significantly improve the effect of multipath fading on derived performance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abou-Rjeily, C., & Bkassiny, M. (2010). On the achievable diversity orders over non-severely faded lognormal channels. IEEE Communications Letters, 14(8), 695–697.

    Article  Google Scholar 

  2. Alouini, M. S., & Simon, M. K. (2001). Performance analysis of coherent equal gain combining over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 50(6), 1449–1463.

    Article  Google Scholar 

  3. Alouini, M. S., & Simon, M. K. (2002). Dual diversity over correlated log-normal fading channels. IEEE Transactions on Communications, 50(12), 1946–1959.

    Article  Google Scholar 

  4. Annamalai, A., & Tellambura, C. (2001). Error rates for Nakagami-m fading multichannel reception of binary and M-ary signals. IEEE Transactions on Communications, 49(1), 58–68.

    Article  Google Scholar 

  5. Annamalai, A., Tellambura, C., & Bhargava, V. (2005). A general method for calculating error probabilities over fading channels. IEEE Transactions on Communications, 53(5), 841–852.

    Article  Google Scholar 

  6. Batra, A., Balakrishnan, J., Aiello, G., Foerster, J., & Dabak, A. (2004). Design of a multiband OFDM system for realistic UWB channel environments. IEEE Transactions on Microwave Theory and Techniques, 52(9), 2123–2138.

    Article  Google Scholar 

  7. Beaulieu, N. C. (2013). A novel generalized framework for performance analysis of selection combining diversity. IEEE Transactions on Communications, 61(10), 4196–4205.

    Article  Google Scholar 

  8. Beaulieu, N. C., & Rajwani, F. (2004). Highly accurate simple closed-form approximations to lognormal sum distributions and densities. IEEE Communications Letters, 8(12), 709–711.

    Article  Google Scholar 

  9. Beaulieu, N. C., & Xie, Q. (2004). An optimal lognormal approximation to lognormal sum distributions. IEEE Transactions on Vehicular Technology, 53(2), 479–489.

    Article  Google Scholar 

  10. da Silva, C. R. C. M., & Yacoub, M. D. (2002). A generalized solution for diversity combining techniques in fading channels. IEEE Transactions on Microwave Theory and Techniques, 50(1), 46–50.

    Article  Google Scholar 

  11. David Tse, P. V. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  12. ECMA-368: High rate ultra wideband PHY and MAC standerd. Tech. rep. (2007). https://www.ecma-international.org/publications/standards/Ecma-368.htm.

  13. Goldsmith, A. (2005). Wireless Communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  14. Hwang, T., Yang, C., Wu, G., Li, S., & Li, G. Y. (2009). OFDM and its wireless applications: A survey. IEEE Transactions on Vehicular Technology, 58(4), 1673–1694.

    Article  Google Scholar 

  15. Kim, Y. G., & Beaulieu, N. C. (2010). A note on error rates for nakagami-m fading multichannel reception of binary and M-ary signals. IEEE Transactions on Communications, 58(9), 2471–2471.

    Article  Google Scholar 

  16. Ko, Y. C., Alouini, M. S., & Simon, M. K. (2000). Average SNR of dual selection combining over correlated Nakagami-m fading channels. IEEE Communications Letters, 4(1), 12–14.

    Article  Google Scholar 

  17. Kondoju, S. K., & Mani, V. V. (2016). Outage and average BER analysis of multiband OFDM UWB system with MRC/EGC receiver in log-normal fading channels. In: 2016 23rd International Conference on Telecommunications (ICT) (pp. 1–5).

  18. Laourine, A., Stephenne, A., & Affes, S. (2009). On the capacity of log-normal fading channels. IEEE Transactions on Communications, 57(6), 1603–1607.

    Article  Google Scholar 

  19. Liu, Z., Almhana, J., & McGorman, R. (2008). Approximating lognormal sum distributions with power lognormal distributions. IEEE Transactions on Vehicular Technology, 57(4), 2611–2617.

    Article  Google Scholar 

  20. Liu, Z., Almhana, J., Wang, F., & Mcgorman, R. (2007). Mixture lognormal approximations to lognormal sum distributions. IEEE Communications Letters, 11(9), 711–713.

    Article  Google Scholar 

  21. Lu, H., Xu, T., Nikookar, H., & Ligthart, L. P. (2013). Performance analysis of the cooperative ZP-OFDM: Diversity, capacity and complexity. Wireless Personal Communications, 68, 587–608.

    Article  Google Scholar 

  22. Manimegalai, C. T., & Kumar, R. (2015). Performance enhancement of multi band-OFDM based ultra wide band systems for WPAN. Wireless Personal Communications, 82, 183–200.

    Article  Google Scholar 

  23. Marinova, M., Thielens, A., Tanghe, E., Vallozzi, L., Vermeeren, G., Joseph, W., et al. (2015). Diversity performance of off-body MB-OFDM UWB-MIMO. IEEE Transactions on Antennas and Propagation, 63(7), 3187–3197.

    Article  MathSciNet  Google Scholar 

  24. Mehbodniya, A., & Aissa, S. (2011). Outage and BER analysis for ultrawideband-based WPAN in Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 60(7), 3515–3520.

    Article  Google Scholar 

  25. Mehta, N. B., Wu, J., Molisch, A. F., & Zhang, J. (2007). Approximating a sum of random variables with a lognormal. IEEE Transactions on Wireless Communications, 6(7), 2690–2699.

    Article  Google Scholar 

  26. Milton Abramowitz, I. A. S. (1970). Handbook of mathematical functions: With formulas, graphs, and mathematical tables. Gaithersburg: National Bureau of Standards.

    MATH  Google Scholar 

  27. Nouri, H., Touati, F., & Uysal, M. (2016). Diversity-multiplexing tradeoff for log-normal fading channels. IEEE Transactions on Communications, 64(7), 3119–3129.

    Article  Google Scholar 

  28. Prasad, R. (2004). OFDM for wireless communications systems. Norwood: Artech House.

    Google Scholar 

  29. Proakis, J. (2000). Digital communications (4th ed.). New York: McGraw-Hill Engineering.

    MATH  Google Scholar 

  30. Qi, X., Alouini, M. S., & Ko, Y. C. (2003). Closed-form analysis of dual-diversity equal-gain combining over Rayleigh fading channels. IEEE Transactions on Wireless Communications, 2(6), 1120–1125.

    Article  Google Scholar 

  31. Rahayu, Y., Rahman, T., Ngah, R., & Hall, P. (2008) Ultra wideband technology and its applications. In: Wireless and optical communications networks, 2008. 5th IFIP international conference on WOCN ’08 (pp. 1–5).

  32. Rana, V., Chauhan, P. S., Soni, S. K., & Bhatt, M. (2017). A new closed-form of ASEP and channel capacity with MRC and selection combining over inverse gaussian shadowing. AEU—International Journal of Electronics and Communications, 74, 107–115.

    Article  Google Scholar 

  33. Sarkar, M. Z. I., & Ratnarajah, T. (2013). Secrecy capacity over log-normal fading channel with diversity combining techniques. In: 2013 IEEE wireless communications and networking conference (WCNC) (pp. 2457–2461).

  34. Simon, M. K., & Alouini, M. S. (2004). Digital communication over fading channels, 2 edn. Wiley series in telecommunications and signal processing. Hoboken: Wiley.

  35. Skraparlis, D., Sandell, M., Sakarellos, V. K., Panagopoulos, A. D., & Kanellopoulos, J. D. (2010). On the effect of correlation on the performance of dual diversity receivers in lognormal fading. IEEE Communications Letters, 14(11), 1038–1040.

    Article  Google Scholar 

  36. Snow, C., Lampe, L., & Schober, R. (2005). Performance analysis of multiband OFDM for UWB communication. In IEEE International Conference on Communications, 2005. ICC 2005 (vol. 4, pp. 2573–2578).

  37. Sudjai, M., & Tran, L. C. (2014). A BER based adaptive STFC MB-OFDM UWB system for WBAN applications. In: 2014 IEEE international conference on communications (ICC) (pp. 5670–5675).

  38. Yang, Q., & Kwak, K. S. (2009). Outage performance of STBC MB-OFDM UWB. AEU—International Journal of Electronics and Communications, 63(8), 685–688.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Krishna Kondoju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Mean and Variance Calculations

Consider \(\gamma\) as a log-normal random variable with PDF given in (4), i.e. \(10~{\text {log}}~\gamma \approx {\mathcal {N}}\left( \mu ,\Omega \right)\). The expectation value of \(\sqrt{\gamma }\) is

$$\begin{aligned} E\left[ \sqrt{\gamma }\right] =&\int \limits _{-\infty }^{\infty }\left( 10^{\frac{x}{10}}\right) ^{\frac{1}{2}} \frac{1}{\sqrt{2\pi \Omega }}{\text {exp}}\left( -\frac{\left( x-\mu \right) ^{2}}{2\Omega }\right) dx \\ =&\,{\text {exp}}\left( \frac{\Omega }{8\zeta ^{2}}+\frac{\mu }{2\zeta }\right) \end{aligned}$$
(58)

The expectation value of \(\gamma\) is

$$\begin{aligned} E\left[ \gamma \right] =&\int \limits _{-\infty }^{\infty }10^{\frac{x}{10}}\frac{1}{\sqrt{2\pi \Omega }} {\text {exp}}\left( -\frac{\left( x-\mu \right) ^{2}}{2\Omega }\right) dx \\ =&\,{\text {exp}}\left( \frac{\Omega }{2\zeta ^{2}}+\frac{\mu }{\zeta }\right) \end{aligned}$$
(59)

and the expectation value of \(\gamma ^{2}\) is

$$\begin{aligned} E\left[ \gamma ^{2}\right] =&\int \limits _{-\infty }^{\infty }\left( 10^{\frac{x}{10}}\right) ^{2}\frac{1}{\sqrt{2\pi \Omega }} {\text {exp}}\left( -\frac{\left( x-\mu \right) ^{2}}{2\Omega }\right) dx \\ =&\,{\text {exp}}\left( \frac{2\Omega }{\zeta ^{2}}+\frac{2\mu }{\zeta }\right) \end{aligned}$$
(60)

Thus variance of \(\sqrt{\gamma }\) is

$$\begin{aligned} {\text {var}}\left( \sqrt{\gamma }\right) =&E\left[ \gamma \right] -E^{2}\left[ \sqrt{\gamma }\right] \\ =&\,{\text {exp}}\left( \frac{\Omega }{4\zeta ^{2}}+\frac{\mu }{\zeta }\right) \left( {\text {exp}}\left( \frac{\Omega }{4\zeta ^{2}}\right) -1\right) \end{aligned}$$
(61)

and variance of \(\gamma\) is

$$\begin{aligned} {\text {var}}\left( \gamma \right) =&E\left[ \gamma ^{2}\right] -E^{2}\left[ \gamma \right] \\ =&{\text {exp}}\left( \frac{\Omega }{\zeta ^{2}}+\frac{2\mu }{\zeta }\right) \left( {\text {exp}}\left( \frac{\Omega }{\zeta ^{2}}\right) -1\right) \end{aligned}$$
(62)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondoju, S.K., Vakamulla, V.M. Closed-Form Analysis of Various Diversity Techniques for Multiband OFDM UWB System Over Log-Normal Fading Channels. Wireless Pers Commun 109, 1781–1803 (2019). https://doi.org/10.1007/s11277-019-06652-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06652-z

Keywords

Navigation