Skip to main content
Log in

Network Coverage in Interference Limited Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The performance of a wireless sensor network is limited by the available bandwidth of the shared wireless channel. For the need to share the available bandwidth sensors contend for concurrent transmissions. The simultaneous transmissions by the neighbouring nodes are the main source of interference at the intended receiver sensor. In this paper, we derive the successful decoding probability of receiver sensor in presence of interference and Rayleigh fading channel. We introduce the concept of circular influence zone, to impose a restriction on the aggregated interference from the distant neighbours at an intended receiver sensor. We provide an insight about the critical sensor density which yields an optimal trade-off between the achievable coverage and receiver decoding probability in presence of co-channel interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goussevskaia, O., Oswald, Y. A., & Wattenhofer, R. (2007). Complexity in geometric SINR. In Proceedings of eighth ACM international symposium on mobile ad hoc networking and computing-MobiHoc’07, Canada, 9–14 September 2005 (pp. 100–109). https://doi.org/10.1145/1288107.1288122.

  2. Tsai, Y.-R. (2008). Sensing coverage for randomly distributed wireless sensor networks in shadowed environments. IEEE Transactions on Vehicular Technology, 57(1), 556–564. https://doi.org/10.1109/TVT.2007.905624.

    Article  MathSciNet  Google Scholar 

  3. Miorandi, D., Altman, E., & Alfano, G. (2008). The impact of channel randomness on coverage and connectivity of ad hoc and sensor networks. IEEE Transactions on Wireless Communications, 7(3), 1062–1072. https://doi.org/10.1109/TWC.2007.060842.

    Article  Google Scholar 

  4. Dousse, O., Baccelli, F., & Thiran, P. (2003). Impact of interferences on connectivity in ad hoc networks. In IEEE INFOCOM 2003, San Francisco, 30 March–3 April. https://doi.org/10.1109/infcom.2003.1209195.

  5. Dousse, O., Baccelli, F., & Thiran, P. (2005). Impact of interferences on connectivity in ad-hoc networks. IEEE/ACM Transactions on Networking (TON), 13(2), 425–436. https://doi.org/10.1109/TNET.2005.845546.

    Article  Google Scholar 

  6. Rajagopalan, R., & Varshney, P. K. (2009). Connectivity analysis of wireless sensor networks with regular topologies in the presence of channel fading. IEEE Transactions on Wireless Communications, 8(7), 3475–3483. https://doi.org/10.1109/TWC.2009.060484.

    Article  Google Scholar 

  7. Weber, S. P., Yang, X., Andrews, J. G., & Veciana, G. De. (2005). Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Transactions on Information Theory, 51(12), 4091–4102. https://doi.org/10.1109/TIT.2005.858939.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hasan, A., & Andrews, J. G. (2007). The guard zone in wireless ad hoc networks. IEEE Transactions on Wireless Communications, 6(3), 897–906. https://doi.org/10.1109/TWC.2007.04793.

    Article  Google Scholar 

  9. Aalo, V. A., & Mukasa, C. (2015). Impact of interference on the coverage and connectivity of ad hoc networks in a fading environment. AEU-International Journal of Electronics and Communications, 69(8), 1094–1101. https://doi.org/10.1016/j.aeue.2015.04.003.

    Article  Google Scholar 

  10. Khodier, M., & Saleh, G. (2010). Beamforming and power control for interference reduction in wireless communications using particle swarm optimization. AEU-International Journal of Electronics and Communications, 64(6), 489–502. https://doi.org/10.1016/j.aeue.2009.03.010.

    Article  Google Scholar 

  11. Wang, J. T. (2011). Distributed joint power control and beamforming algorithms. AEU-International Journal of Electronics and Communications, 65(3), 235–238. https://doi.org/10.1016/j.aeue.2010.02.011.

    Article  Google Scholar 

  12. Campos-delgado, D. U., & Luna-rivera, J. M. (2013). Distributed power allocation algorithm in wireless networks under SNR constraints. AEU-International Journal of Electronics and Communications, 67(12), 1015–1024. https://doi.org/10.1016/j.aeue.2013.06.002.

    Article  Google Scholar 

  13. Kumar, S., & Lobiyal, D. K. (2014). Impact of interference on coverage in wireless sensor networks. Wireless Personal Communications, 74(2), 683–701. https://doi.org/10.1007/s11277-013-1314-6.

    Article  Google Scholar 

  14. Debnath, S., Hossain, A., & Chowdhury, S. M. (2017). Comment on “Impact of interference on coverage in wireless sensor networks”. Wireless personal communications, 97(1), 1071–1073. https://doi.org/10.1007/s11277-017-4552-1.

    Article  Google Scholar 

  15. Mordachev, V., & Loyka, S. (2009). On node density-outage probability tradeoff in wireless networks. IEEE Journal on Selected Areas in Communications, 27(7), 1120–1131. https://doi.org/10.1109/JSAC.2009.090909.

    Article  Google Scholar 

  16. Behnad, A., Purmehdi, H., & Lahouti, F. (2010). Probability of outage in a clustered poisson field of interfering nodes. In 17th international conference on telecommunications (ICT), Qatar, 4–17 April (pp. 784–789). https://doi.org/10.1109/ictel.2010.5478814.

  17. Behnad, A., & Beaulieu, N. C. (2015). Best neighbor communication in a Poisson field of nodes. IEEE Transactions on Vehicular Technology, 64(2), 818–823. https://doi.org/10.1109/TVT.2014.2322626.

    Article  Google Scholar 

  18. Behnad, A., & Wang, X. (2015). Distance statistics of the communication best neighbor in a Poisson field of nodes. IEEE Transactions on Communications, 63(3), 997–1005. https://doi.org/10.1109/TCOMM.2015.2389255.

    Article  Google Scholar 

  19. Zorzi, M., & Pupolin, S. (1995). Optimum transmission ranges in multihop packet radio networks in the presence of fading. IEEE Transactions on Communications, 43(7), 2201–2205. https://doi.org/10.1109/26.392962.

    Article  Google Scholar 

  20. Ganti, R. K., & Haenggi, M. (2009). Interference and outage in clustered wireless ad hoc networks. IEEE Transactions on Information Theory, 55(9), 4067–4086. https://doi.org/10.1109/TIT.2009.2025543.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, J., Ding, M., & Zhang, Q. T. (2012). Interference statistics and performance analysis of MIMO ad hoc networks in binomial fields. IEEE Transactions on Vehicular Technology, 61(5), 2033–2043. https://doi.org/10.1109/TVT.2012.2189252.

    Article  Google Scholar 

  22. Guruacharya, S., Tabassum, H., & Hossain, E. (2016). Analysis of SINR outage in large-scale cellular networks using campbell’s theorem and cumulant generating functions (pp. 1–31). arXiv:1607.06887.

  23. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404. https://doi.org/10.1109/18.825799.

    Article  MathSciNet  MATH  Google Scholar 

  24. Cui, Jian, & Sheikh, A. U. H. (1999). Outage probability of cellular radio systems using maximal ratio combining schemes in the presence of multiple interferers. IEEE Transactions on Communications, 47(8), 1121–1124. https://doi.org/10.1109/26.780445.

    Article  Google Scholar 

  25. Jakó, Z., & Ghosh, J. (2017). Network throughput and outage analysis in a Poisson and Matérn cluster based LTE-Advanced small cell networks. AEU-International Journal of Electronics and Communications, 75, 46–52. https://doi.org/10.1016/j.aeue.2017.03.006.

    Article  Google Scholar 

  26. Stoyan, D., Kendall, W., & Mecke, J. (1996). Stochastic geometry and its applications (2nd ed., p. 1996). New York: Wiley.

    MATH  Google Scholar 

  27. Weber, S. P., Andrews, J. G., Yang, X., & Veciana, G. De. (2007). Transmission capacity of wireless ad hoc networks with successive interference cancellation. IEEE Transactions on Information Theory, 53(8), 2799–2814. https://doi.org/10.1109/TIT.2007.901153.

    Article  MathSciNet  MATH  Google Scholar 

  28. Haenggi, M., & Ganti, R. K. (2008). Interference in large wireless networks. Foundation and Trends in Networking, 3(2), 127–248. https://doi.org/10.1561/1300000015.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Hossain.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, S., Hossain, A. Network Coverage in Interference Limited Wireless Sensor Networks. Wireless Pers Commun 109, 139–153 (2019). https://doi.org/10.1007/s11277-019-06555-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06555-z

Keywords

Navigation