Skip to main content
Log in

An Optimal Information Hiding Approach Based on Pixel Value Differencing and Modulus Function

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposes an image steganography approach based on pixel value differencing and modulus function (PVDMF) to improve the peak signal-to-noise ratio (PSNR) and hiding capacity (HC). The proposed approach has two variants, (1) PVDMF 1 and (2) PVDMF 2. Both the variants use the difference between a pair of consecutive pixels to embed the secret data based on an adaptive range table. The modulus operations with pixel readjustment have been utilized to reduce the distortion in the stego-image. The experimental results prove that the PVDMF 1 offer higher PSNR and PVDMF 2 offers larger HC as compared to the existing approaches. In addition, the fall off boundary problem which exists in most of the pixel value differencing approaches has been avoided. Furthermore, it has been experimentally verified that the proposed approach is resistant against RS attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Subhedar, M. S., & Mankar, V. H. (2014). Current status and key issues in image steganography: A survey. Computer science review, 13, 95–113.

    Article  MATH  Google Scholar 

  2. Cheddad, A., Condell, J., Curran, K., & Mc Kevitt, P. (2010). Digital image steganography: Survey and analysis of current methods. Signal Processing, 90(3), 727–752.

    Article  MATH  Google Scholar 

  3. Pradhan, A., Sahu, A.K., Swain, G., & Sekhar, K. R. (2016). Performance evaluation parameters of image steganography techniques. In IEEE international conference on research advances in integrated navigation systems (pp. 1–8).

  4. Hussain, M., Wahab, A. W. A., Javed, N., & Jung, K. H. (2018). Recursive information hiding scheme through LSB, PVD shift, and MPE. IETE Technical Review, 35(1), 53–63.

    Article  Google Scholar 

  5. Hussain, M., Abdul Wahab, A. W., Javed, N., & Jung, K. H. (2016). Hybrid data hiding scheme using right-most digit replacement and adaptive least significant bit for digital images. Symmetry, 8(6), 41.

    Article  MathSciNet  Google Scholar 

  6. Sahu, A. K., & Swain, G. (2016). A review on LSB substitution and PVD based image steganography techniques. Indonesian Journal of Electrical Engineering and Computer Science, 2(3), 712–719.

    Article  Google Scholar 

  7. Hussain, M., Wahab, A. W. A., Idris, Y. I. B., Ho, A. T., & Jung, K. H. (2018). Image steganography in spatial domain: A survey. Signal Processing: Image Communication, 65, 46–66.

    Google Scholar 

  8. Wu, N. I., & Hwang, M. S. (2017). A novel LSB data hiding scheme with the lowest distortion. The Imaging Science Journal, 65(6), 371–378.

    Article  Google Scholar 

  9. Sahu, A. K., & Swain, G. (2018). An improved data hiding technique using bit differencing and LSB matching. Internetworking Indonesia Journal, 10(1), 17–21.

    Google Scholar 

  10. Sahu, A. K., & Swain, G. (2017). Information hiding using group of bits substitution. International Journal on Communications Antenna and Propagation, 7(2), 162–167.

    Article  Google Scholar 

  11. Sahu, A. K., Swain, G., & Babu, E. S. (2018). Digital image steganography using bit flipping. Cybernetics and Information Technologies, 18(1), 69–80.

    Article  MathSciNet  Google Scholar 

  12. Sahu, A. K., & Swain, G. (2019). A novel n-rightmost bit replacement image steganography technique. 3D Research, 10(1), 2.

    Article  Google Scholar 

  13. Wu, D. C., & Tsai, W. H. (2003). A steganographic technique for images by pixel-value differencing. Pattern Recognition Letters, 24(9–10), 1613–1626.

    Article  MATH  Google Scholar 

  14. Swain, G. (2015). Adaptive pixel value differencing steganography using both vertical and horizontal edges. Multimedia Tools and Applications, 75(21), 13541–13556.

    Article  Google Scholar 

  15. Hussain, M., Wahab, A. W. A., Ho, A. T., Javed, N., & Jung, K. H. (2017). A data hiding scheme using parity-bit pixel value differencing and improved rightmost digit replacement. Signal Processing: Image Communication, 50, 44–57.

    Google Scholar 

  16. Jung, K. H., & Yoo, K. Y. (2015). High-capacity index based data hiding approach. Multimedia Tools and Applications, 74(6), 2179–2193.

    Article  Google Scholar 

  17. Wu, H. C., Wu, N. I., Tsai, C. S., & Hwang, M. S. (2005). Image steganographic scheme based on pixel-value differencing and LSB replacement methods. IEE Proceedings-Vision, Image and Signal Processing, 152(5), 611–615.

    Article  Google Scholar 

  18. Khodaei, M., & Faez, K. (2012). New adaptive steganographic approach using least-significant-bit substitution and pixel-value differencing. IET Image Processing, 6(6), 677–686.

    Article  Google Scholar 

  19. Jung, K. H. (2018). Data hiding scheme improving embedding capacity using mixed PVD and LSB on bit plane. Journal of Real-Time Image Processing, 14(1), 127–136.

    Article  Google Scholar 

  20. Khodaei, M., Sadeghi Bigham, B., & Faez, K. (2016). Adaptive data hiding, using pixel-value-differencing and LSB substitution. Cybernetics and Systems, 47(8), 617–628.

    Article  Google Scholar 

  21. Swain, G. (2018). Very high capacity image steganography technique using quotient value differencing and LSB substitution. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-018-3372-2.

    Article  Google Scholar 

  22. Kieu, T. D., & Chang, C. C. (2011). A steganographic scheme by fully exploiting modification directions. Expert Systems with Applications, 38(8), 10648–10657.

    Article  Google Scholar 

  23. Shen, S. Y., & Huang, L. H. (2015). A data hiding scheme using pixel value differencing and improving exploiting modification directions. Computers & Security, 48, 131–141.

    Article  Google Scholar 

  24. Jung, K. H. (2016). High-capacity data hiding scheme based on exploiting modification direction and modulo operation. Advanced Science Letters, 22(9), 2471–2474.

    Article  Google Scholar 

  25. Maleki, N., Jalali, M., & Jahan, M. V. (2014). Adaptive and non-adaptive data hiding approaches for grayscale images based on modulus function. Egyptian Informatics Journal, 15(2), 115–127.

    Article  Google Scholar 

  26. Wang, C. M., Wu, N. I., Tsai, C. S., & Hwang, M. S. (2008). A high quality steganographic approach with pixel-value differencing and modulus function. Journal of Systems and Software, 81(1), 150–158.

    Article  Google Scholar 

  27. Lee, C. F., & Chen, H. L. (2010). A novel data hiding scheme based on modulus function. Journal of Systems and Software, 83(5), 832–843.

    Article  Google Scholar 

  28. Liao, X., Wen, Q., & Zhang, J. (2013). Improving the adaptive steganographic methods based on modulus function. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 96(12), 2731–2734.

    Article  Google Scholar 

  29. Shen, S., Huang, L., & Tian, Q. (2015). A novel data hiding for color images based on pixel value difference and modulus function. Multimedia Tools and Applications, 74(3), 707–728.

    Article  Google Scholar 

  30. Liao, X., Wen, Q. Y., Zhao, Z. L., & Zhang, J. (2012). A novel steganographic method with four-pixel differencing and modulus function. Fundamenta Informaticae, 118(3), 281–289.

    MathSciNet  Google Scholar 

  31. Zhao, W., Jie, Z., Xin, L., & Qiaoyan, W. (2015). Data embedding based on pixel value differencing and modulus function using indeterminate Eq. The Journal of China Universities of Posts and Telecommunications, 22(1), 95–100.

    Article  Google Scholar 

  32. Liao, X., Yu, Y., Li, B., Li, Z., & Qin, Z. (2019). A new payload partition strategy in color image steganography. IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2019.2896270.

    Article  Google Scholar 

  33. Moran, M. B. H., Ochi, L. S., Conci, A., Araujc, A. S., & Muchaluat-Saade, D. C. (2018). Iterated local search for RGB image steganography. In 2018 25th International conference on systems, signals and image processing (IWSSIP) (pp. 1–5). IEEE.

  34. Liao, X., Chen, G., & Yin, J. (2016). Content-adaptive steganalysis for color images. Security and Communication Networks, 9(18), 5756–5763.

    Article  Google Scholar 

  35. USC-SIPI Image Database. Accessed January 16, 2018, from http://sipi.usc.edu/database/database.php?volume=misc.

  36. Accessed January 16, 2018, from http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm.

  37. Liao, X., Guo, S., Yin, J., Wang, H., Li, X., & Sangaiah, A. K. (2017). New cubic reference table based image steganography. Multimedia Tools and Applications, 77, 10033–10050. https://doi.org/10.1007/s11042-017-4946-9.

    Article  Google Scholar 

  38. Muhammad, K., Ahmad, J., Rho, S., & Baik, S. W. (2017). Image steganography for authenticity of visual contents in social networks. Multimedia Tools and Applications, 76(18), 18985–19004.

    Article  Google Scholar 

  39. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600–612.

    Article  Google Scholar 

  40. Liao, X., Qin, Z., & Ding, L. (2017). Data embedding in digital images using critical functions. Signal Processing: Image Communication, 58, 146–156.

    Article  Google Scholar 

Download references

Acknowledgements

This work is an independent work and did not receive any funding from any agency either directly or indirectly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Kumar Sahu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, A.K., Swain, G. An Optimal Information Hiding Approach Based on Pixel Value Differencing and Modulus Function. Wireless Pers Commun 108, 159–174 (2019). https://doi.org/10.1007/s11277-019-06393-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06393-z

Keywords

Navigation