Skip to main content
Log in

Energy Efficient All-Digital Phase Locked Loop Architecture Design on High Resolution Fast Clocking Time to Digital Converter (TDC) Using Model Prescient Control (MPC) Technique

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Phase locked loops (PLLs) are utilized as a part of clock recovery and frequency synthesis. Entirely digital PLLs are more reasonable for the solid execution with different circuits contrasted with the customary usage of the PLLs. The all-digital PLLs are additionally autonomous of process varieties and can be efficiently ported to various innovations. In this work displays the plan of an all-digital phase locked loop (ADPLL) utilizing a quick timing based time to digital converter (TDC) and a model prescient control (MPC) method. General outline criteria are condensed for the all-digital usage in contrast with the common methodologies and simple executions. The outline has been actualized utilizing 0.18 μm CMOS innovation. The ADPLL can work in the frequency run between 215 and 350 MHz the ADPLL has a 1.768 μs bolt time off. This work displays the ADPLL configuration utilizing tanner and examination the execution of parameters. Power is point by point in tanner. A subtle element of the fundamental blocks of an ADPLL is talked about. In this work, the lessening of highest frequency, power, transient examination and delay is spoken of the outcome is thought about. Its simulation comes about utilizing tanner tool are additionally talked about. The proposed ADPLL design dynamic phase frequency locator with MPC_TDC most extreme power utilization is 4.653 mW and the proposed ADPLL with MPC_TDC was mainly used in communication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yoo, J., & Rieh, J. S. (2017). CMOS 120 GHz phase-locked loops based on two different VCO topologies. Journal of Electromagnetic Engineering and Science, 17(2), 98–104. https://doi.org/10.5515/JKIEES.2017.17.2.98.

    Article  Google Scholar 

  2. Jang, T., Jeong, S., Jeon, D., Choo, K. D., Sylvester, D., & Blaauw, D. (2014). A noise reconfigurable all-digital phase-locked loop using a switched Capacitor-Based Frequency-Locked Loop and a Noise Detector. Circuits, (99), 1–20.

  3. Jang, S., Kim, S., Chu, S.-H., Jeong, G.-S., Kim, Y., & Jeong, D.-K. (2015). An optimum loop gain tracking all-digital PLL using autocorrelation of bang–bang phase-frequency detection. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(9), 20–39.

    Google Scholar 

  4. Cheng, K.-H., Hu, C.-C., Liu, J.-C., & Huang, H.-Y. (2010). A time-to-digital converter using multi-phase-sampling and time amplifier for all digital phase-locked loop. In Design and diagnostics of electronic circuits and systems (DDECS), 2010 (Vol. 45, pp. 20–37).

  5. Hussein, A. I., Vasadi, S., & Paramesh, J. (2015). A 450 fs 65-nm CMOS millimeter-wave time-to-digital converter using statistical element selection for all-digital PLLs. IEEE Journal of Solid-State Circuits,(99), 20–42.

  6. Mahima, R., & Muralidharan, D. (2017). A low power vernier time-to-digital converter using adiabatic logic. In Networks & advances in computational technologies (NetACT) (Vol. 26, pp. 130–154).

  7. Staszewski, R. B., et al. (2004). All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS. IEEE Journal of Solid-State Circuits, 39(12), 2278–2291.

    Article  Google Scholar 

  8. Song, J., An, Q., & Liu, S. (2006). A high-resolution time-to-digital converter implemented in field-programmable-gate-arrays. IEEE Transactions on Nuclear Science, 53(1), 236–241.

    Article  Google Scholar 

  9. Kaipu, S. V. R., Vaish, K., & Komatireddy, S., Sood, A., & Goswami, M. (2016). Design of a low power wide range phase locked loop using 180 nm CMOS technology. In Signal processing and communication (ICSC), (Vol. 29, pp. 550–571).

  10. Lu, P., Liscidini, A., & Andreani, P. (2012). A 3.6 mW, 90 nm CMOS gated- Vernier time-to-digital converter with an equivalent resolution of 3.2 ps. IEEE Journal of Solid-State Circuits, 47(7), 1626–1635.

    Article  Google Scholar 

  11. Anderson, Niklas U., & Vesterbacka, Mark. (2014). A vernier time-to-digital converter with delay latch chain architecture. IEEE Transactions on Circuits and Systems, 61(10), 773–777.

    Google Scholar 

  12. Park, Y., & Wentzloff, D. D. (2011). Acyclic Vernier TDC for ADPLLs synthesized from a standard cell library. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(7), 1511–1517.

    Article  MathSciNet  Google Scholar 

  13. Chau, Y. A., & Chenon, C.-F. (2011). The design of adaptive-bandwidth all-digital phase-locked loops. Journal of Circuits, Systems, and Computers, 20(6), 1–29.

    Article  Google Scholar 

  14. Lee, S.-K., Seo, Y.-H., Park, H.-J., & Sim, J.-Y. (2010). A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS. IEEE Journal of Solid-State Circuits, 45(12), 2874–2881.

    Article  Google Scholar 

  15. Straayer, M. Z., & Perrott, M. H. (2009). A multi-path gated ring oscillator TDC with first-order noise shaping. IEEE Journal of Solid-State Circuits, 44(4), 1089–1098.

    Article  Google Scholar 

  16. Chuang, Y.-C., Tsai, S.-L., Liu, C.-E., & Lin, T.-H. (2012). An all-digital phase-locked loop with dynamic phase control for fast locking. In IEEE Asian solid-state circuits conference (pp. 297–300).

  17. Kim, K., Kim, Y., Yu, W., & Cho, S. (2013). A 7 bit, 3.75 ps resolution two-step time-to-digital converter in 65 nm CMOS using pulse-train time amplifier. IEEE Journal of Solid-State Circuits, 48(4), 1009–1017.

    Article  Google Scholar 

  18. Chen, X., Yang, J., & Shi, L.-X. (2011). A fast locking all-digital phase-locked loop via feed-forward compensation technique. IEEE Transactions on VLSI Systems, 19(5), 857–868.

    Article  Google Scholar 

  19. Lee, M., & Abidi, A. A. (2008). A 9 b, 1.25 ps resolution coarse-fine time-to digital converter in 90 nm CMOS that amplifies a time residue. IEEE Journal of Solid-State Circuits, 43(4), 769–777.

    Article  Google Scholar 

  20. Daniels, J., Dehaene, W., Steyaert, M., & Wiesbauer, A. (2010). A/D conversion using asynchronous delta-sigma modulation and time-to digital conversion. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(9), 2404–2412.

    Article  MathSciNet  Google Scholar 

  21. Geng, H., Xu, D., & Wu, B. (2011). A novel hardware-based all-digital phase locked loop applied to grid-connected power converters. IEEE Transactions on Industrial Electronics, 58(5), 1737–1745.

    Article  Google Scholar 

  22. Lee, J.-Y., Park, M.-J., Min, B.-H., Kim, S., Park, M.-Y., & Yu, H.-K. (2012). A 4-GHz all digital PLL with low-power TDC and phase-error compensation. IEEE Transactions on Circuits and Systems, 59(8), 1706–1719.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Sathish Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathish Kumar, T.M., Periasamy, P.S. Energy Efficient All-Digital Phase Locked Loop Architecture Design on High Resolution Fast Clocking Time to Digital Converter (TDC) Using Model Prescient Control (MPC) Technique. Wireless Pers Commun 102, 3343–3359 (2018). https://doi.org/10.1007/s11277-018-5371-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5371-8

Keywords

Navigation