Skip to main content
Log in

New TR-UWB Receiver Algorithm Design to Mitigate MUI in Concurrent Schemes

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Impulse-radio ultra-wideband (IR-UWB) technology has gained popularity in wireless personal area networks (WPANs) because of its promising aspect in providing extremely high data rates at low cost. However, multi-user interference (MUI) adversely affects the IR-UWB communication technique, especially in WPANs concurrent transmission scenarios. In this paper, we solve this problem via proposing a new correlation technique, namely, multi-point impulse correlation (MPIC), based on a new mask equation design. The proposed MPIC technique outperforms the traditional technique in TR receivers in terms of the obtained symbol error rate (SER) value (by 4.5 db) as confirmed by the simulation results. Multiple scenarios were conducted which confirm that the proposed MPIC technique offers better SER performance in comparison with TR. According to the obtained results, MPIC is highly successful in reducing MUI, especially in concurrent schemes and with a large number of users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Dang, Q. H., & van der Veen, A.-J. (2007). A decorrelating multiuser receiver for transmit-reference UWB systems. IEEE Journal on Selected Topics in Signal Processing, 1(3), 431–442.

    Article  Google Scholar 

  2. Guimarães, D. A., & Gomes, G. G. R. (2012). Introduction to ultra wideband impulse radio. Revista Telecomunicacoes, 14(1), 49–61.

    Google Scholar 

  3. Chung, W. C., August, N. J., & Ha, D. S. (2005). Signaling and multiple access techniques for ultra wideband 4G wireless communication systems. IEEE Wireless Communications, 12(2), 46–55.

    Article  Google Scholar 

  4. Reed, J. (2005). An introduction to ultra wideband communication systems. Upper Saddle River, NJ: Prentice Hall PTR.

    Google Scholar 

  5. Huang, T.-J., & Yang, J.-F. (2017). An effective timing synchronization scheme for DHTR UWB receivers. Wireless Personal Communications. doi:10.1007/s11277-017-4009-6.

  6. Lee, W. (2010). Ultra-wideband systems: Review. Naresuan University Engineering Journal, 5(2), 63–77.

    Google Scholar 

  7. Kharrat-Kammoun, F., Le Martret, C., & Ciblat, P. (2009). Performance analysis of IR-UWB in a multi-user environment. IEEE Transactions on Wireless Communications, 8(11), 5552–5563.

    Article  Google Scholar 

  8. Arslan, H., Chen, Z. N., & Di Benedetto, M.-G. (2006). Ultra wideband wireless communication. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  9. Shi, N., & Niemegeers, I. (2009). Multi-hop IR-UWB WPAN architecture and protocols. In IEEE international conference on wireless and mobile computing, networking and communications (pp. 356–362).

  10. Li, J.-S., Kao, H.-C., & Cheng, S.-Y. (2007). Multi-hop networking with space reuse in IEEE 802.15.3 UWB WPANs. In The 2nd international conference on wireless broadband and ultra wideband communications (AusWireless 2007) (pp. 73–73).

  11. Cassioli, D., Win, M., Vatalaro, F., & Molisch, A. (2007). Low complexity rake receivers in ultra-wideband channels. IEEE Transactions on Wireless Communications, 6(4), 1265–1275.

    Article  Google Scholar 

  12. Kim, D. I., Member, S., Jia, T., & Member, S. (2008). M-ary orthogonal coded/balanced ultra-wideband transmitted-reference systems in multipath. IEEE Transactions on Communications, 56(1), 102–111.

    Article  Google Scholar 

  13. Cheng, X., & Guan, Y. L. (2012). Pre/post-rake diversity combining for UWB communications in the presence of pulse overlap. IEEE Transactions on Wireless Communications, 11(2), 481–487.

    Article  Google Scholar 

  14. Tang, J., Xu, Z., & Sadler, B. (2007). Performance analysis of b-bit digital receivers for TR-UWB systems with inter-pulse interference. IEEE Transactions on Wireless Communications, 6(2), 494–505.

    Article  Google Scholar 

  15. Hazra, R., & Tyagi, A. (2013). Cooperative impulse radio ultra-wideband communication using coherent and non-coherent detectors: A review. Wireless Personal Communications, 77(1), 719–748.

    Article  Google Scholar 

  16. Romme, J., & Witrisal, K. (2006). Transmitted-reference UWB systems using weighted autocorrelation receivers. IEEE Transactions on Microwave Theory and Techniques, 54(4), 1754–1761.

    Article  Google Scholar 

  17. Taghipour, J., Vakili, V. T., & Abbasi-Moghadam, D. (2012). Comparison of kurtosis and fourth power detectors with applications to IR-UWB OOK systems. International Journal of Communications, Network and System Sciences, 5(1), 43–49.

    Article  Google Scholar 

  18. D’Amico, A. A., & Taponecco, L. (2006). A differential receiver for UWB systems. IEEE Transactions on Wireless Communications, 5(7), 1601–1605.

    Article  Google Scholar 

  19. Hazra, R., & Tyagi, A. (2014). A survey on various coherent and non-coherent IR-UWB receivers. Wireless Personal Communications, 79(3), 2339–2369.

    Article  Google Scholar 

  20. Jin, Y., Liu, H., Kim, K. J., & Kwak, K. S. (2014). A reconfigurable digital receiver for transmitted reference pulse cluster UWB communications. IEEE Transactions on Vehicular Technology, 63(9), 4734–4740.

    Article  Google Scholar 

  21. Chen, Y., & Beaulieu, N. (2008). Improved receivers for generalized UWB transmitted reference systems. IEEE Transactions on Wireless Communications, 7(2), 500–504.

    Article  Google Scholar 

  22. Milanovic, J., Herceg, M., Vranjes, M., & Job, J. (2015). Method for bandwidth efficiency increasing of M-ary PPM transmitted-reference UWB communication systems. Wireless Personal Communications, 83(2015), 1927–1944.

    Article  Google Scholar 

  23. Witrisal, K., Leus, G., Janssen, G., Pausini, M., Troesch, F., Zasowski, T., et al. (2009). Noncoherent ultra-wideband systems. IEEE Signal Processing Magazine, 26(4), 48–66.

    Article  Google Scholar 

  24. Xu, Z., & Sadler, B. (2006). Multiuser transmitted reference ultra-wideband communication systems. IEEE Journal on Selected Areas in Communications, 24(4), 766–772.

    Article  Google Scholar 

  25. Zhao, S. (2006). Pulsed ultra-wideband: Transmission, detection, and performance. Corvallis: Oregon State University.

    Google Scholar 

  26. Le Boudec, J.-Y., & Merz, R. (2008). Concurrent and parallel transmissions are optimal for low data-rate IR-UWB networks. In 2008 IEEE 19th international symposium on personal, indoor and mobile radio communications (pp. 1–6).

  27. Merz, R., Widmer, J., Le Boudec, J.-Y., & Radunović, B. (2005). A joint PHY/MAC Architecture for low-radiated power TH-UWB wireless ad-hoc networks. Wireless Communications and Mobile Computing, 5(5), 567–580.

    Article  Google Scholar 

  28. Flury, M., & Merz, R. (2007). Managing impulsive interference in impulse. ST Journal of Research Wireless Sensor Networks, 4(1), 118–130.

    Google Scholar 

  29. Jiang, L., Guo, J., & Wang, Y. (2006). A novel approach to interference mitigation with coexisting spectrum users for UWB pulse radio. In International conference on wireless communications, networking and mobile computing (pp. 1–4).

  30. Belghith, S., & Naanaa, A. (2011). Performance enhancement of a time hopping—Pulse position modulation ultra-wide-band system using guided local search. IET Communications, 5(15), 2212–2220.

    Article  MathSciNet  MATH  Google Scholar 

  31. Young, D. J., & Beaulieu, N. C. (2012). Multiuser interference mitigation in time-hopped ultra-wideband receivers. In IEEE international conference on ultra-wideband (pp. 125–129).

  32. Hung, H.-L. (2015). Performance analysis of multistage interference cancellation in THUWB systems using adaptive differential evolution algorithm with novel mutation and crossover strategies. Wireless Personal Communications, 82(3), 1179–1199.

    Article  Google Scholar 

  33. Hamidoun, K., Elassali, R., Elhillali, Y., Rivenq, A., Elbaamrani, K., & Boukour, F. E. (2015). A new multi-user ultra wide band system based on modified Gegenbauer functions and M-OAM modulation for communication of intelligent transportation systems. Wireless Personal Communications, 82(4), 2115–2134.

    Article  Google Scholar 

  34. Shao, H., & Beaulieu, N. C. (2011). Direct sequence and time-hopping sequence designs for narrowband interference mitigation in impulse radio UWB systems. IEEE Transactions on Communications, 59(7), 1957–1965.

    Article  Google Scholar 

  35. Muqaibel, A. H., & Jadallah, A. N. (2015). SINR evaluation for improved practical coordinated multi-point clustering. Wireless Personal Communications, 83(4), 3091–3102.

    Article  Google Scholar 

  36. Xiong, H. (2017). An efficient narrowband interference suppression approach in ultra-wideband receiver. IEEE Sensors Journal, 17(9), 2741–2748.

    Article  Google Scholar 

  37. Kouassi, K., Clavier, L., Doumbia, I., & Rolland, P.-A. (2013). Optimal PWR codes for TH-PPM UWB multiple-access interference mitigation. IEEE Communications Letters, 17(1), 103–106.

    Article  Google Scholar 

  38. Juanda, F. N. U., Shu, W., & Chang, J. S. (2017). A 10-GS/s 4-bit single-core digital-to-analog converter for cognitive ultrawidebands. IEEE Transactions on Circuits and Systems Part II: Express Briefs, 64(1), 16–20.

    Article  Google Scholar 

  39. Mehbodniya, A., & Aissa, S. (2009). Effects of MB-OFDM system interference on the performance of DS-UWB. IEEE Transactions on Vehicular Technology, 58(8), 4665–4669.

    Article  Google Scholar 

  40. Chen, H., Guo, Z., Yao, R. Y., Shen, X., & Li, Y. (2006). Performance analysis of delayed acknowledgment scheme in UWB-based high-rate WPAN. IEEE Transactions on Vehicular Technology, 55(2), 606–621.

    Article  Google Scholar 

  41. Xu, H., & Yang, L. (2010). Modeling and transceiver design for asymmetric UWB links with heterogeneous nodes. IEEE Transactions on Communications, 58(6), 1834–1842.

    Article  Google Scholar 

  42. Li, M. (2015). Optimal receiver scheme for transmitted-reference ultra-wideband system in coal mine. Journal of Communication, 10(3), 206–212.

    Article  Google Scholar 

  43. Ahmed, Q. Z., Park, K.-H., & Alouini, M.-S. (2015). Ultrawide bandwidth receiver based on a multivariate generalized Gaussian distribution. IEEE Transactions on Wireless Communications, 14(4), 1800–1810.

    Article  Google Scholar 

  44. Di Benedetto, M.-G., & Giancola, G. (2004). Understanding ultra wide band radio fundamentals. Upper Saddle River: Prentice Hall PTR.

    Google Scholar 

  45. Houda, C., Moez, H., & Ridha, B. (2012). Analytical approach for the TH-BPSK ultra-wideband systems performance. International Journal of Computer Theory and Engineering, 4(6), 987–989.

    Article  Google Scholar 

  46. Molisch, A., Cassioli, D., Emami, S., Fort, A., Kannan, B., Karedal, J., et al. (2006). A comprehensive standardized model for ultrawideband propagation channels. IEEE Transactions on Antennas and Propagation, 54(11), 3151–3166.

    Article  Google Scholar 

  47. Giancola, G., & Di Benedetto, M.-G. (2006). A novel approach for estimating multi-user interference in impulse radio UWB networks: The pulse collision model. Signal Processing, 86(9), 2185–2197.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Saeed Mohammed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, M.S., Singh, M.J. & Abdullah, M. New TR-UWB Receiver Algorithm Design to Mitigate MUI in Concurrent Schemes. Wireless Pers Commun 97, 4431–4450 (2017). https://doi.org/10.1007/s11277-017-4732-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4732-z

Keywords

Navigation