Skip to main content
Log in

New Solutions for Distributed Realization of 8 × 1 MISO channel with QOSTBC

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We proposed new solutions for distributed realization of the quasi orthogonal space-time block coding (QOSTBC), which is designed for 8 × 1 multiple input–single output (MISO) system. The first proposed solution assumes that base station and relay stations are equipped with 2 antennas, while for the second solution base station is equipped with 4 antennas and relay stations are with one antenna. In both scenarios mobile unit is equipped with single antenna. The proposed solutions are compared with distributed QOSTBC which is used for 4 × 1 MISO system. The simulation results show BER performances improvements provided with the proposed solutions in comparison with distributed QOSTBC designed for 4 × 1 MISO. It was shown that the first proposed scheme provides lower BER values than the second solution. Also, beside ideal channel estimation, influence of real estimation errors on BER performances is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gozalvez, J. (2016). New 3GPP standard for IoT [mobile radio]. IEEE Vehicular Technology Magazine, 11(1), 14–20.

    Article  Google Scholar 

  2. Kaur, N., & Sood, S. K. (2017). An energy-efficient architecture for the Internet of Things (IoT). IEEE Systems Journal, 11(2), 796–805.

  3. Sulyman, A. I., Oteafy, S. M. A., & Hassanein, H. S. (2017). Expanding the cellular-IoT umbrella: An architectural approach. IEEE Wireless Communications, 24(3), 66–71.

    Article  Google Scholar 

  4. Beyene, Y. D., Tirkkonen, R. J. O., Ruttik, K., Iraji, S., Larmo, A., Tirronen, T., et al. (2017). NB-IoT technology overview and experience from cloud-RAN implementation. IEEE Wireless Communications, 24(3), 26–32.

    Article  Google Scholar 

  5. Wallace, K., Moran, K., Novak, E., Zhou, G., & Sun, K. (2016). Toward sensor-based random number generation for mobile and IoT devices. IEEE Internet of Things Journal, 3(6), 1189–1201.

    Article  Google Scholar 

  6. Hossain, M. S., Xu, C., Li, Y., Pathan, A. K., Bilbao, J., Zeng, W., et al. (2017). Impact of next-generation mobile technologies on IoT-cloud convergence. IEEE Communications Magazine, 55(1), 18–19.

    Article  Google Scholar 

  7. Urosevic, U., Veljovic, Z., & Pejanovic-Djurisic, M. (2013). MIMO solution for performance improvements of OFDM–CDMA system with pilot tone. Wireless Networks, 19(8), 2021–2028.

    Article  Google Scholar 

  8. Kim, Y., Ji, H., Lee, J., Nam, Y., Ng, B., Tzanidis, I., et al. (2014). Full dimension MIMO (FD-MIMO): The next evolution of MIMO in LTE systems. IEEE Wireless Communications, 21(2), 26–33.

    Article  Google Scholar 

  9. Prasad, K. N. R. S. V., Hossain, E., & Bhargava, V. K. (2017). Energy efficiency in massive MIMO-based 5G networks: Opportunities and challenges. IEEE Wireless Communications, 24(3), 86–94.

  10. Ai, B., Guan, K., He, R., Li, J., Li, G., He, D., et al. (2017). On indoor millimeter wave massive MIMO channels: Measurement and simulation. IEEE Journal on Selected Areas in Communications, 35(7), 1678–1690.

  11. Chen, X., & Zhang, Y. (2017). Mode selection in MU-MIMO downlink networks: A physical-layer security perspective. IEEE Systems Journal, 11(2), 1128–1136.

  12. Lozano, A., & Jindal, N. (2010). Transmit diversity vs. spatial multiplexing in modern MIMO systems. IEEE Transactions on Wireless Communications, 9(1). doi:10.1109/TWC.2010.01.081381.

  13. Woong, C. (2011). Performance of amplify-and-forward cooperative networks with differential unitary space time coding. Wireless Networks, 17(3), 621–627.

    Article  Google Scholar 

  14. Lu, X., Ni, Q., Li, W., & Zhang, H. (2017). Dynamic user grouping and joint resource allocation with multi-cell cooperation for uplink virtual MIMO systems. IEEE Transactions on Wireless Communications, 16(6), 3854–3869.

    Article  Google Scholar 

  15. Zhang, M., Wen, M., Cheng, X., & Yang, L. (2012). A dual-hop virtual MIMO architecture based on hybrid differential spatial modulation. IEEE Transactions on Vehicular Technology, 61(6), 2586–2598.

    Article  Google Scholar 

  16. Lee, S. H., Shin, D. R., Jeong, H. W., & Kim, Y. H. (2016). Distributed bargaining strategy for downlink virtual MIMO with device-to-device communication. IEEE Transactions on Communications, 64(4), 1503–1516.

    Article  Google Scholar 

  17. Park, J., & Lee, S. (2012). Distributed MIMO ad-hoc networks: Link scheduling, power allocation, and cooperative beamforming. IEEE Transactions on Vehicular Technology, 61(6), 2586–2598.

    Article  Google Scholar 

  18. Wang, D., Wang, J., You, X., Wang, Y., Chen, M., & Hou, X. (2013). Spectral efficiency of distributed MIMO systems. IEEE Journal on Selected Areas in Communications, 31(10), 2112–2127.

    Article  Google Scholar 

  19. Truong, K. T., Sartori, P., & Heath, R. W. (2013). Cooperative algorithms for MIMO amplify-and-forward relay networks. IEEE Transactions on Signal Processing, 61(5), 1272–1287.

    Article  MathSciNet  Google Scholar 

  20. Urosevic, U., & Veljovic, Z. (2016). Improving BER performance of virtual QOSTBC. Wireless Networks, 8, 2649–2657.

    Article  Google Scholar 

  21. Veljovic, Z., & Urosevic, U. (2015). Increasing code rate of the cooperative relaying with virtual OSTBC. Wireless Personal Communications, 83(1), 399–410.

    Article  Google Scholar 

  22. Urosevic, U., Veljovic, Z., & Pejanovic-Djurisic, M. (2014). A new solution for simple cooperative relaying. Wireless Personal Communications, 75(2), 1235–1250.

    Article  Google Scholar 

  23. Yamaoka, T., Hara, Y., Fukui, N., Kuboand, H., & Yamazato, T. (2012). A simple cooperative relaying with alamouti coded transmission. IEICE Transactions on Communications, E95–B(2), 643–646.

    Article  Google Scholar 

  24. Veljovic, Z., & Urosevic, U. (2017). New solutions for cooperative relaying implementation of OSTBC with 3/4 code rate. Wireless Personal Communications, 92(1), 51–61.

    Article  Google Scholar 

  25. Kühn, V. (2006). Wireless communications over MIMO channels: Applications to CDMA and multiple antenna systems (pp. 283–288). Hoboken: Wiley.

    Book  Google Scholar 

  26. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  MathSciNet  MATH  Google Scholar 

  27. Bayer, O., & Oner, M. (2017). Joint space time block code and modulation classification for MIMO systems. IEEE Wireless Communications Letters, 6(1), 62–65.

    Google Scholar 

  28. Liu, Y., Xia, X., Zhang, Z., & Zhang, H. (2017). Distributed space-time coding based on the self-coding of RLI for full-duplex two-way relay cooperative networks. IEEE Transactions on Signal Processing, 65(12), 3036–3047.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugljesa Urosevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urosevic, U., Veljovic, Z. New Solutions for Distributed Realization of 8 × 1 MISO channel with QOSTBC. Wireless Pers Commun 97, 1799–1812 (2017). https://doi.org/10.1007/s11277-017-4649-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4649-6

Keywords

Navigation