Skip to main content
Log in

A Cluster-Based Cooperative Spectrum Sensing Strategy to Maximize Achievable Throughput

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a novel cooperative spectrum sensing (CSS) strategy is proposed for cognitive radio networks (CRN) with imperfect reporting channels. This CSS strategy uses simultaneously four techniques to overcome undesirable effects of reporting channels, which are errors and overhead traffic. First, it uses an energy efficient clustering algorithm to maximize the CRN lifetime. Second, in each cluster, an incremental weighing fusion rule is used to improve the accuracy of local sensing performed by secondary users. Third, it selects more reliable improved decisions for sending to the fusion center, to decrease overhead traffic. Fourth, it employs a space–time block code to reduce the probability of errors in reporting channels. We determine the optimal settings of the proposed strategy, such as number of clusters, and their corresponding members by maximizing the achievable throughput of the CRN. Numerical and simulation results will prove the proposed CSS strategy yields the highest throughput for the CRN, while it guarantees the maximum lifetime of CRN, and maximum protection of primary users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akylidiz, I., Lo, B., & Balakrishan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication Journal, 4(1), 40–62.

    Article  Google Scholar 

  2. Lee, J. W. (2013). Cooperative spectrum sensing scheme over imperfect feedback channels. IEEE Communications Letters, 17(6), 1192–1195.

    Article  Google Scholar 

  3. Chaudhari, S., Lund´en, J., Koivunen, V., & Poor, H. V. (2012). Cooperative sensing with imperfect reporting channels: Hard decisions or soft decisions? IEEE Transactions on Signal Processing, 60(1), 18–28.

    Article  MathSciNet  Google Scholar 

  4. Zhang, W., & Letaief, K. (2008). Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(12), 4761–4766.

    Article  Google Scholar 

  5. Mashreghi, M., & Abolhassani, B. (2010). Optimum number of secondary users and optimum fusion rule in cooperative spectrum sensing to maximize channel throughput. In Proceedings of international symposium on telecommunications, Tehran, Iran, pp. 1–6.

  6. Ghasemi, A., & Sousa, E. (2007). Opportunistic spectrum access in fading channels through collaborative sensing. Journal of Communications, 2(2), 71–82.

    Article  Google Scholar 

  7. Khalid, L., & Anpalagan, A. (2014). Reliability-based decision fusion scheme for cooperative spectrum sensing. IET Communications, 8(14), 2423–2432.

    Article  Google Scholar 

  8. Ebrahimzadeh, A., & Najimi, M. (2015). Throughput improvement in energy-efficient cooperative spectrum sensing based on sensor selection. Wireless Personal Communication, 85(4), 2099–2114.

    Article  Google Scholar 

  9. Zhang, T., & Tsang, D. H. K. (2015). Cooperative sensing scheduling for energy-efficient cognitive radio networks. IEEE Transactions on Vehicular Technology, 64(6), 2648–2662.

    Article  Google Scholar 

  10. Reisi, N., Ahmadian, M., Jamali, V., & Salari, S. (2012). Cluster-based cooperative spectrum sensing over correlated log-normal channels with noise uncertainty in cognitive radio networks. IET Communication, 6(16), 2725–2733.

    Article  Google Scholar 

  11. Wang, Y., Nie, G., Li, G., & Shi, C. (2013). Sensing-throughput tradeoff in cluster-based cooperative cognitive radio networks with a TDMA reporting frame structure. Wireless Personal Communication, 71(3), 1795–1818.

    Article  Google Scholar 

  12. Mashreghi, M., & Abolhassani, B. (2015). Number of cooperative wireless nodes to achieve a desired BER. Wireless Personal Communication, 82(2), 1059–1083.

    Article  Google Scholar 

  13. Peh, E. C., Liang, Y., Guan, Y. L., & Zeng, Y. (2010). Cooperative spectrum sensing in cognitive radio networks with weighted decision fusion schemes. IEEE Transactions on Wireless Communications, 9(12), 3838–3847.

    Article  Google Scholar 

  14. Niu, R., Chen, B., & Varshney, P. (2006). Fusion of decision transmitted over Rayleigh fading channels in wireless sensor networks. IEEE Transactions on Signal Processing, 54(3), 1018–1027.

    Article  Google Scholar 

  15. Zhang, W., Yang, Y., & Yeo, C. K. (2015). Cluster-based cooperative spectrum sensing assignment strategy for heterogeneous cognitive radio network. IEEE Transactions on Vehicular Technology, 64(6), 2637–2647.

    Article  Google Scholar 

  16. Bilim, M., Kapucu, N., & Develi, I. (2016). A closed-form approximate BEP expression for cooperative IDMA systems over multipath Nakagami-m fading channels. IEEE Communications Letters, 20(8), 1599–1602.

    Article  Google Scholar 

  17. Anees, S., & Bhatnagar, M. R. (2015). Performance of an amplify-and-forward dual-hop asymmetric RF-FSO communication system. Journal of Optical Communications and Networking, 7(2), 124–135.

    Article  Google Scholar 

  18. Kapucu, N., Bilim, M., & Develi, I. (2013). Outage probability analysis of dual-hop decode-and-forward relaying over mixed rayleigh and generalized gamma fading channels. Wireless Personal Communications, 71(3), 1117–1127.

    Article  Google Scholar 

  19. Anees, S., & Bhatnagar, M. R. (2015). Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system. IET Optoelectronics, 9(5), 232–240.

    Article  Google Scholar 

  20. Kapucu, N., Bilim, M., & Develi, I. (2013). SER performance of amplify-and-forward cooperative diversity over asymmetric fading channels. Wireless Personal Communications, 73(2), 947–954.

    Article  Google Scholar 

  21. Ma, S., Yang, Y. L., & Sharif, H. (2011). Distributed MIMO technologies in cooperative wireless networks. IEEE Communications Magazine, 49(5), 78–82.

    Article  Google Scholar 

  22. Lu, K., Fu, S., & Xia, X. G. (2005). Closed-form designs of complex orthogonal space-time block codes of rates (k + 1)/(2k) for 2k − 1 or 2k transmit antennas. IEEE Transactions on Information Theory, 51(12), 4340–4347.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Mashreghi.

Appendices

Appendix 1

This appendix provides the proof of (7). Toward this, we solve the optimization problem in (1) for cluster m, \(1 \le m \le M\), then we extend it to other clusters.

Consider an arbitrary cluster, m, whose number of members has the following relationship with numbers of other clusters’ members,

$$n_{m} = N - n_{q} - \mathop \sum \limits_{{\begin{array}{*{20}c} {i = 1} \\ {i \ne m,q} \\ \end{array} }}^{M} n_{i} ,\quad 1 \le q \le M,\;q \ne m.$$
(45)

In this case, MSDE in (1) can be rewritten in the following form

$$MSDE(\vec{N}_{M} ) = \frac{2}{{\left( {M^{2} - M} \right)}}\left\{ {\mathop \sum \limits_{{\begin{array}{*{20}c} {j = 1} \\ {j \ne m,q} \\ \end{array} }}^{M} \left[ {E_{q} \left( {n_{q} } \right) - E_{j} \left( {n_{j} } \right)} \right]^{2} + \mathop \sum \limits_{{\begin{array}{*{20}c} {i = 1} \\ {i \ne m,q} \\ \end{array} }}^{M} \left[ {E_{m} \left( {n_{m} } \right) - E_{i} \left( {n_{i} } \right)} \right]^{2} + \left[ {E_{q} \left( {n_{q} } \right) - E_{m} \left( {n_{m} } \right)} \right]^{2} + X} \right\}.$$
(46)

where \(X = \mathop \sum \nolimits_{{\begin{array}{*{20}c} {i = 1} \\ {i \ne m,q} \\ \end{array} }}^{M - 1} \mathop \sum \nolimits_{{\begin{array}{*{20}c} {j = i + 1} \\ {j \ne m,q} \\ \end{array} }}^{M} \left[ {E_{i} \left( {n_{i} } \right) - E_{j} \left( {n_{j} } \right)} \right]^{2}\). Substituting (45) into (46), the constraint of (1) is satisfied (i.e. \(\mathop \sum \nolimits_{j = 1}^{M} n_{j} = N\)). Therefore, (1) converts to the following unconstrained case:

$$\mathop {\hbox{min} }\limits_{{\begin{array}{*{20}c} {n_{q} } \\ {1 \le q \le M,q \ne m} \\ \end{array} }} MSDE\left( {n_{q} } \right) = \frac{2}{{\left( {M^{2} - M} \right)}}\left\{ {\mathop \sum \limits_{{\begin{array}{*{20}c} {j = 1} \\ {j \ne m,q} \\ \end{array} }}^{M} \left[ {E_{q} \left( {n_{q} } \right) - E_{j} \left( {n_{j} } \right)} \right]^{2} + \mathop \sum \limits_{{\begin{array}{*{20}c} {i = 1} \\ {i \ne m,q} \\ \end{array} }}^{M} \left[ {E_{m} \left( {N - \mathop \sum \limits_{{\begin{array}{*{20}c} {i = 1} \\ {i \ne m,q} \\ \end{array} }}^{M} n_{i} - n_{q} } \right) - E_{i} \left( {n_{i} } \right)} \right]^{2} + \left[ {E_{q} \left( {n_{q} } \right) - E_{m} \left( {N - \mathop \sum \limits_{{\begin{array}{*{20}c} {i = 1} \\ {i \ne m,q} \\ \end{array} }}^{M} n_{i} - n_{q} } \right)} \right]^{2} +\, X} \right\}$$
(47)

In (47), \(MSDE\left( {n_{q} } \right)\) is a function with discrete variable \(n_{q}\). Hence, we define

$$D\left( {n_{q} } \right) = MSDE\left( {n_{q} + 1} \right) - MSDE\left( {n_{q} } \right).$$
(48)

Substituting \(MSDE\left( {n_{q} } \right)\) into (48), and using (45), we obtain

$$D\left( {n_{q} } \right) = \left( {E_{q} \left( {n_{q} + 1} \right) - E_{q} \left( {n_{q} } \right)} \right)\left( {H_{1} \left( {n_{q} } \right) + H_{1} \left( {n_{q} + 1} \right)} \right) + \left( {E_{m} \left( {n_{m} - 1} \right) - E_{m} \left( {n_{m} } \right)} \right)\left( {H_{2} \left( {n_{q} } \right) + H_{2} \left( {n_{q} + 1} \right)} \right),$$
(49)

where

$$H_{1} \left( {n_{q} } \right) = \left( {m - 1} \right)E_{q} \left( {n_{q} } \right) - E_{m} \left( {n_{m} } \right) - \mathop \sum \limits_{{\begin{array}{*{20}c} {i = 1} \\ {i \ne m,q} \\ \end{array} }}^{M} E_{i} \left( {n_{i} } \right),$$
(50)
$$H_{2} \left( {n_{q} } \right) = \left( {m - 1} \right)E_{m} \left( {n_{m} } \right) - E_{q} \left( {n_{q} } \right) - \mathop \sum \limits_{{\begin{array}{*{20}c} {i = 1} \\ {i \ne m,q} \\ \end{array} }}^{M} E_{i} \left( {n_{i} } \right).$$
(51)

According to (2)–(6), we know that \(E_{q} \left( {n_{q} } \right)\) increases by increasing \(n_{q}\). So, we can define the following two cases:

Case 1

If \(E_{q} \left( {n_{q} + 1} \right) \le E_{m} \left( {n_{m} - 1} \right)\) for \(\forall q,\forall m,\) \(q \ne m\), then \(H_{1} \left( {n_{q} + 1} \right) \le 0\) and \(H_{2} \left( {n_{q} + 1} \right) \ge 0\). Furthermore, from (50) and (51), we have \(H_{1} \left( {n_{q} } \right) < H_{1} \left( {n_{q} + 1} \right)\) and \(H_{2} \left( {n_{q} + 1} \right) < H_{2} \left( {n_{q} } \right)\). Hence, in this case, by looking at (49), we have \(D\left( {n_{q} } \right) < 0\).

Case 2

If \(E_{q} \left( {n_{q} - 1} \right) \ge E_{m} \left( {n_{m} + 1} \right)\) for \(\forall q,\forall m,\) \(q \ne m\), then \(H_{1} \left( {n_{q} - 1} \right) \ge 0\) and \(H_{2} \left( {n_{q} - 1} \right) \le 0\). Furthermore, from (50) and (51), \(H_{1} \left( {n_{q} - 1} \right) < H_{1} \left( {n_{q} } \right)\) and \(H_{2} \left( {n_{q} } \right) < H_{2} \left( {n_{q} - 1} \right)\). Hence, in this case, by looking at (49), we have \(D\left( {n_{q} - 1} \right) > 0\).

Furthermore, by using the properties of discrete-variable functions, solution of (47), \(\hat{n}_{q} , q = 1, \ldots ,m - 1,m + 1, \ldots ,M,\) must satisfy the following inequalities

$$D\left( {\hat{n}_{q} } \right) \ge 0,$$
(52)
$$D\left( {\hat{n}_{q} - 1} \right) \le 0.$$
(53)

Therefore, \(E_{q} \left( {\hat{n}_{q} + 1} \right) > E_{m} \left( {\hat{n}_{m} - 1} \right)\) and \(E_{q} \left( {\hat{n}_{q} - 1} \right) < E_{m} \left( {\hat{n}_{m} + 1} \right)\) for \(\forall q,\forall m,\) \(q \ne m\) are the necessary conditions for solution of (47), which can rewrite as

$$\left\lfloor {E_{q}^{ - 1} \left( {E_{m} \left( {\hat{n}_{m} - 1} \right)} \right)} \right\rfloor \le \hat{n}_{q} \le \left\lceil {E_{q}^{ - 1} \left( {E_{m} \left( {\hat{n}_{m} + 1} \right)} \right)} \right\rceil , 1 \le q \le M, q \ne m.$$
(54)

where \(\hat{n}_{m} = N - \mathop \sum \nolimits_{{\begin{array}{*{20}c} {i = 1} \\ {i \ne m,q} \\ \end{array} }}^{M} \hat{n}_{i} - \hat{n}_{q}\). To obtain the exact value of \(\hat{n}_{m}\), we add M-1 inequalities (54) together as follows

$$\mathop \sum \limits_{{\begin{array}{*{20}c} {q = 1} \\ {q \ne m} \\ \end{array} }}^{M} \left\lfloor {E_{q}^{ - 1} \left( {E_{m} \left( {\hat{n}_{m} - 1} \right)} \right)} \right\rfloor \le N - \hat{n}_{m} \le \mathop \sum \limits_{{\begin{array}{*{20}c} {q = 1} \\ {q \ne m} \\ \end{array} }}^{M} \left\lceil {E_{q}^{ - 1} \left( {E_{m} \left( {\hat{n}_{m} + 1} \right)} \right)} \right\rceil , 1 \le m \le M.$$
(55)

Hence, we get (7) that we wanted.

Appendix 2

In this appendix, we derive (23) and (24). By using \(\vec{\varvec{X}}_{k}^{m} ,\) \(\vec{\varvec{A}}_{k}^{a} ,\) \(\vec{\varvec{B}}_{k}^{b}\) and \(\vec{\varvec{C}}_{k}^{c}\) defined in Theorem 1, the probability of \(x_{k}^{m} = 1\) for \(y \in \left\{ {0,1} \right\}\) is given as

$$\Pr \left\{ {x_{k}^{m} = 1|H_{y} } \right\} = { \Pr }\left\{ {\left. {w_{m} \mathop \sum \limits_{i = 1}^{k - 1} \hat{x}_{i,k}^{m} + d_{k}^{m} \ge \psi_{IW} \left( {m,k} \right)} \right|H_{y} } \right\} = \mathop \sum \limits_{a = 0}^{{2^{k - 1} - 1}} { \Pr }\left\{ {\left. {w_{m} \mathop \sum \limits_{i = 1}^{k - 1} A_{i}^{a} + d_{k}^{m} \ge \psi_{IW} \left( {m,k} \right)} \right|\vec{\varvec{X}}_{k}^{m} = \vec{\varvec{A}}_{k}^{a} } \right\}{ \Pr }\left\{ {\vec{\varvec{X}}_{k}^{m} = \left. {\vec{\varvec{A}}_{k}^{a} } \right|H_{y} } \right\} = \mathop \sum \limits_{a = 0}^{{2^{k - 1} - 1}} \left( {1 - F_{k} \left( {\left. {\vec{\varvec{A}}_{k}^{a} } \right|H_{y} } \right)} \right){ \Pr }\left\{ {\vec{\varvec{X}}_{k}^{m} = \left. {\vec{\varvec{A}}_{k}^{a} } \right|H_{y} } \right\},$$
(56)

where \(F_{k} \left( {\left. {\vec{\varvec{A}}_{k}^{a} } \right|H_{y} } \right)\) is the CDF of random variable \(d_{j}^{m} ,\) which is defined in (27).

Now, we evaluate the pmf of \(\vec{\varvec{X}}_{k}^{m} ,\) \({ \Pr }\left\{ {\vec{\varvec{X}}_{k}^{m} = \left. {\vec{\varvec{A}}_{k}^{a} } \right|H_{y} } \right\},\) as

$${ \Pr }\left\{ {\vec{\varvec{X}}_{k}^{m} = \left. {\vec{\varvec{A}}_{k}^{a} } \right|H_{y} } \right\} = \mathop \sum \limits_{b = 0}^{{2^{k - 1} - 1}} { \Pr }\left\{ {\left. {\vec{\varvec{X}}_{k}^{m} = \vec{\varvec{A}}_{k}^{a} } \right|\vec{\varvec{Z}}_{k}^{m} = \vec{\varvec{B}}_{k}^{b} } \right\}{ \Pr }\left\{ {\vec{\varvec{Z}}_{k}^{m} = \left. {\vec{\varvec{B}}_{k}^{b} } \right|H_{y} } \right\},$$
(57)

where \(\vec{\varvec{Z}}_{k}^{m} = \left\{ {x_{1}^{m} ,x_{2}^{m} , \ldots ,x_{k - 1}^{m} } \right\}\) is the vector of decisions that transmitted from \(k - 1\) SUs. The elements of \(\vec{\varvec{X}}_{k}^{m}\) are conditionally independent for a given \(\vec{\varvec{Z}}_{k}^{m}\). So,

$$\begin{aligned} { \Pr }\left\{ {\vec{\varvec{X}}_{k}^{m} = \left. {\vec{\varvec{A}}_{k}^{a} } \right|\vec{\varvec{Z}}_{k}^{m} = \vec{\varvec{B}}_{k}^{b} } \right\} & = \prod\limits_{j = 2}^{k - 1} {{ \Pr }\left\{ {\hat{x}_{j,k}^{m} = A_{j}^{a} |x_{j}^{m} = B_{j}^{b} } \right\}} \\ & = \prod\limits_{j = 1}^{k - 1} { ( {\text{P}}_{e1} )^{{\left| {A_{j}^{a} - B_{j}^{b} } \right|}} (1 - P_{e1} )^{{\left| {1 - A_{j}^{a} - B_{j}^{b} } \right|}} } , \\ \end{aligned}$$
(58)

where \(P_{e1} = { \Pr }\left\{ {\left. {A_{j}^{a} \ne B_{j}^{b} } \right|x_{j}^{m} = B_{j}^{b} ,\hat{x}_{j,k}^{m} = A_{j}^{a} } \right\} = P_{e}^{in} \left( {SNR_{in}^{m} } \right).\) Furthermore, \(x_{j}^{m}\) depends on \(j - 1\) previous SUs’ decisions, \(\vec{\varvec{Z}}_{j}^{m}\). So, we have

$${ \Pr }\left\{ {\left. {\vec{\varvec{Z}}_{k}^{m} = \vec{\varvec{B}}_{k}^{b} } \right|H_{y} } \right\} = { \Pr }\left\{ {\left. {x_{1}^{m} = B_{1}^{b} } \right|H_{y} } \right\}\mathop \prod \limits_{j = 2}^{k - 1} { \Pr }\left\{ {\left. {x_{j}^{m} = B_{j}^{b} } \right|\vec{\varvec{Z}}_{j}^{m} = \vec{\varvec{B}}_{j}^{b} ,H_{y} } \right\}.$$
(59)

Now,

$$\begin{aligned} { \Pr }\left\{ {\left. {x_{j}^{m} = 1} \right|\vec{\varvec{Z}}_{j}^{m} = \vec{\varvec{B}}_{j}^{b} ,H_{y} } \right\} & = \mathop \sum \limits_{c = 0}^{{2^{j - 1} - 1}} { \Pr }\left\{ {\left. {x_{j}^{m} = 1} \right|\vec{\varvec{X}}_{j}^{m} = \vec{\varvec{C}}_{j}^{c} ,\vec{\varvec{Z}}_{j}^{m} = \vec{\varvec{B}}_{j}^{b} ,H_{y} } \right\}{ \Pr }\left\{ {\left. {\vec{\varvec{X}}_{j}^{m} = \vec{\varvec{C}}_{j}^{c} } \right|\vec{\varvec{Z}}_{j}^{m} = \vec{\varvec{B}}_{j}^{b} } \right\} \\ & = \mathop \sum \limits_{c = 0}^{{2^{j - 1} - 1}} \left\{ {{ \Pr }\left\{ {\left. {x_{j}^{m} = 1} \right|\vec{\varvec{X}}_{j}^{m} = \vec{\varvec{C}}_{j}^{c} ,H_{y} } \right\}\mathop \prod \limits_{i = 1}^{j - 1} \left( {P_{e2} } \right)^{{\left| {B_{i}^{b} - C_{i}^{c} } \right|}} \left( {1 - P_{e2} } \right)^{{1 - \left| {B_{i}^{b} - C_{i}^{c} } \right|}} } \right\} \\ & = \mathop \sum \limits_{c = 0}^{{2^{j - 1} - 1}} \left\{ {\left( {1 - F_{j} \left( {\left. {\vec{\varvec{C}}_{j}^{c} } \right|H_{y} } \right)} \right)\left( {P_{e2} } \right)^{{\mathop \sum \limits_{i = 1}^{j - 1} \left| {B_{i}^{b} - C_{i}^{c} } \right|}} \left( {1 - P_{e2} } \right)^{{j - 1 - \mathop \sum \limits_{i = 1}^{j - 1} \left| {B_{i}^{b} - C_{i}^{c} } \right|}} } \right\} \\ \end{aligned}$$
(60)

and

$$\begin{aligned} { \Pr }\left\{ {\left. {x_{j}^{m} = 0} \right|\vec{\varvec{Z}}_{j}^{m} = \vec{\varvec{B}}_{j}^{b} ,H_{y} } \right\} & = \mathop \sum \limits_{c = 0}^{{2^{j - 1} - 1}} \left\{ {\left( {1 - { \Pr }\left\{ {\left. {x_{j}^{m} = 1} \right|\vec{\varvec{X}}_{j}^{m} = \vec{\varvec{C}}_{j}^{c} ,H_{y} } \right\}} \right)\mathop \prod \limits_{i = 1}^{j - 1} \left( {P_{e2} } \right)^{{\left| {B_{i}^{b} - C_{i}^{c} } \right|}} \left( {1 - P_{e2} } \right)^{{1 - \left| {B_{i}^{b} - C_{i}^{c} } \right|}} } \right\} \\ & = 1 - \mathop \sum \limits_{c = 0}^{{2^{j - 1} - 1}} \left\{ {\left( {1 - F_{j} \left( {\left. {\vec{\varvec{C}}_{j}^{c} } \right|H_{y} } \right)} \right)\left( {P_{e2} } \right)^{{\mathop \sum \limits_{i = 1}^{j - 1} \left| {B_{i}^{b} - C_{i}^{c} } \right|}} \left( {1 - P_{e2} } \right)^{{j - 1 - \mathop \sum \limits_{i = 1}^{j - 1} \left| {B_{i}^{b} - C_{i}^{c} } \right|}} } \right\} \\ & = 1 - { \Pr }\left\{ {\left. {x_{j}^{m} = 1} \right|\vec{\varvec{Z}}_{j}^{m} = \vec{\varvec{B}}_{j}^{b} ,H_{y} } \right\} \\ \end{aligned}$$
(61)

Using \(p_{j} \left( {\left. {\vec{\varvec{B}}_{k}^{b} } \right|H_{y} } \right)\) defined in (26), and (60) and (61), we can rewrite (59) as

$${ \Pr }\left\{ {\left. {\vec{\varvec{Z}}_{k}^{m} = \vec{\varvec{B}}_{k}^{b} } \right|H_{y} } \right\} = \mathop \prod \limits_{j = 1}^{k - 1} p_{j} \left( {\left. {\vec{\varvec{B}}_{j}^{b} } \right|H_{y} } \right)^{{B_{j}^{b} }} \left( {1 - p_{j} \left( {\left. {\vec{\varvec{B}}_{j}^{b} } \right|H_{y} } \right)} \right)^{{1 - B_{j}^{b} }} .$$
(62)

Substituting (62) into (56), then we get the same formula for \(y = 0\) and \(y = 1\) as (23) and (24) that we wanted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashreghi, M., Abolhassani, B. A Cluster-Based Cooperative Spectrum Sensing Strategy to Maximize Achievable Throughput. Wireless Pers Commun 96, 4557–4584 (2017). https://doi.org/10.1007/s11277-017-4403-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4403-0

Keywords

Navigation