Skip to main content
Log in

Average BER and Capacity Improvement in MIMO-OSTBC Systems Over \(\varvec{\eta}-\varvec{\mu}\) Fading Channels with Absolute SNR Scheduling

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we consider a multiple-input-multiple-output system employing orthogonal space time block codes over a generalized fading model, namely, \(\eta - \mu\) fading distribution. Simplified closed-form expressions for the probability density function and cumulative distribution function of the proposed system under absolute SNR scheduling have been derived in this paper. More specifically, new analytical expressions for average bit error rate and average channel capacity are derived for two cases: (a) independent and identically distributed (i.i.d) fading links and (b) independent and non-identically distributed (i.ni.d) fading links. Numerical evaluation shows improvement in system performance for various values of \(\eta\) in format 1 with increase in the (a) number of users (U), (b) number of transmit antennas (n T ), and (c) number of receive antennas (n R ). The proposed mathematical analysis is verified using MATLAB numerical results which demonstrate the accuracy of theoretical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alamouti, S. (1998). A simple transmit diversity technique for wireless communications. IEEE Transactions on Communications, 16(8), 1451–1458.

    Google Scholar 

  2. Gesbert, D., Shafi, M., Shiu, D. S., Smith, P., & Naguib, A. (2003). From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas of Communication: Special Issue on MIMO Systems, Part I, 21, 281–302.

    Article  Google Scholar 

  3. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes for orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  MathSciNet  MATH  Google Scholar 

  4. Kansal, L., Kansal, A., & Singh, K. (2011). BER analysis of MIMO-OFDM system using OSTBC code structure for M-PSK under different fading channels. International Journal of Scientific and Engineering Research, 2(11), 1–12.

    Google Scholar 

  5. Yacoub, M. D. (2007). The κ − μ distribution and the η − μ distribution. IEEE Antenna Propagation Magazine, 49(1), 68–81.

    Article  Google Scholar 

  6. da Costa, D. B., Filho, J. C. S. S., Yacoub, M. D., & Fraidenraich, G. (2008). Second-order statistics of η − μ fading channels: Theory and applications. IEEE Transactions on Wireless Communications, 7(3), 819–824.

    Article  Google Scholar 

  7. Peppas, K. P. (2010). Capacity of η − μ fading channels under different adaptive transmission techniques. IET Communications, 4(5), 532–539.

    Article  MathSciNet  MATH  Google Scholar 

  8. Peppas, K. P., Lazarakis, F., Zervos, T., Alexandridis, A., & Dangakis, K. (2010). Sum of non-identical independent squared η − μ variates and applications in the performance analysis of DS-CDMA systems. IEEE Transactions on Wireless Communications, 9(9), 2718–2723.

    Article  Google Scholar 

  9. Yu, H., Wei, G., Ji, F., & Zhang, X. (2011). On the error probability of cross-QAM with MRC reception over generalized η − μ fading channels. IEEE Transactions on Vehicular Technology, 60(6), 2631–2643.

    Article  Google Scholar 

  10. Peppas, K. P., Alexandropoulos, G. C., & Mathiopoulos, P. T. (2013). Performance analysis of dual-hop AF relaying systems over mixed η − μ and k − μ fading channels. IEEE Transactions on Vehicular Technology, 62(7), 3149–3163.

    Article  Google Scholar 

  11. Morales-Jimenez, D., & Paris, J. F. (2010). Outage probability analysis for η – μ fading channels. IEEE Communication Letters, 14(6), 521–523.

    Article  Google Scholar 

  12. Mark, J. O., Samir, B. B., & Saad, N. M. (2013). Capacity and error probability performance analysis for MIMO MC-DS CDMA system in η − μ fading environment. International Journal of Electronics and Communications, 67(4), 269–281.

    Article  Google Scholar 

  13. Ajib, W., & Haccoun, D. (2005). An overview of scheduling algorithms in MIMO-based fourth-generation wireless systems. IEEE Network, 5(19), 43–48.

    Article  Google Scholar 

  14. Realp, M., & Perez-Neira, A. (2006). Generalized model for scheduling in MIMO multiple access systems: A cross-layer approach. Signal Processing, 86(8), 1834–1847.

    Article  MATH  Google Scholar 

  15. Vicario, J., & Anton-Haro, C. (2006). Spatial vs. multiuser diversity trade-offs for cross-layer scheduling in limited feedback systems. Signal Processing, 86(8), 1848–1863.

    Article  MATH  Google Scholar 

  16. Chang, Y., & Araki., K. (2012). Proportionally fair user scheduling for multiuser MIMO systems with unequal average SNR users. In 75th IEEE conference on vehicular technology, Yokohama, Japan, pp. 1–5.

  17. Gaaloul, F., Radaydeh, R. M., Alouini, M. S., & Yang, H. C. (2012). On the performance of multiuser scheduling with post-examining under non-identical fading. In IEEE conference on wireless communications and networking, Shanghai, China, pp. 1251–1256.

  18. Torabi, M., Haccoun, D., & Ajib, W. (2011). On the capacity and BER performance of multiuser scheduling over MIMO Nakagami-m fading channels. Signal Processing, 91(11), 2487–2496.

    Article  MATH  Google Scholar 

  19. Yacoub, M. D. (2007). The κ − μ distribution and the η − μ distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.

    Article  Google Scholar 

  20. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). California: Academic Press.

    MATH  Google Scholar 

  21. David, H. A., & Nagaraja, H. N. (2003). Order statistics (3rd ed.). Hoboken: Wiley.

    Book  MATH  Google Scholar 

  22. da Costa, D. B., & Yacoub, M. D. (2007). Average channel capacity for generalized fading scenarios. IEEE Communication Letters, 11(12), 949–951.

    Article  Google Scholar 

  23. Efthymoglou, G. P., Ermolova, N. Y., & Aalo, V. A. (2010). Channel capacity and average error rates in generalized-K fading channels. IET Communications, 4(11), 1364–1372.

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Q. T. (2003). A generic correlated Nakagami fading model for wireless communications. IEEE Transactions on Communications, 51(11), 1745–1748.

    Article  Google Scholar 

  25. Tao, M. (2009). Effects of non-identical Rayleigh fading on differential unitary space-time modulation. IEEE Transactions on Communications, 57(5), 1359–1369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhyacharan Bhaskar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krithiga, S., Bhaskar, V. & Malarvizhi, S. Average BER and Capacity Improvement in MIMO-OSTBC Systems Over \(\varvec{\eta}-\varvec{\mu}\) Fading Channels with Absolute SNR Scheduling. Wireless Pers Commun 95, 4225–4242 (2017). https://doi.org/10.1007/s11277-017-4076-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4076-8

Keywords

Navigation