Skip to main content
Log in

A Novel Cooperative Communication System Based on Multilevel Convolutional Codes

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The authors propose a system where single antenna mobile users share antennas to transmit their information cooperatively to the common base station. Each mobile user overhears the coded information transmitted by other users, detects it and further encodes it along with its own information. The encoding is done using multilevel coding scheme with convolutional codes as component codes. The proposed system considers the self-information of user u at level u to reduce complexity while decoding. The coded symbols are mapped to M-ary quadrature amplitude modulation constellation using multi-resolution modulation partitioning. This enables the component codes to be designed for lower order constellation. Each cooperative user transmits multilevel coded symbols to the common base station, thus creating transmit diversity. The base station receives noisy superposition of independent Rayleigh faded signals transmitted by cooperative users and pass it through a multistage decoder. The multistage decoder employs maximum likelihood based Viterbi decoder at each stage to detect the information of each user. The Viterbi decoder applies max-log approximation to reduce the branch metric complexity. The proposed cooperative multilevel coding system outperforms non-cooperative multilevel coding system and is less complex than the existing cooperative multilevel coding system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sklar, B. (2001). Digital communications. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  2. Sendonaris, A. (1999). Advanced techniques for next-generation wireless systems. Ph.D. thesis, Rice University, United States.

  3. Vitetta, G., Taylor, D. P., Colavolpe, G., Pancaldi, F., & Martin, P. A. (2013). Wireless communications: Algorithmic techniques. Hoboken: Wiley.

    Book  Google Scholar 

  4. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.

    Article  Google Scholar 

  5. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part I. System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  6. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part II. Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.

    Article  Google Scholar 

  7. Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hunter, T. E., & Nosratinia, A. (2002). Cooperation diversity through coding. In Proceedings of IEEE international symposium on information theory (pp. 220).

  9. Hunter, T. E., & Nosratinia, A. (2006). Diversity through coded cooperation. IEEE Transactions on Wireless Communications, 5(2), 283–289.

    Article  Google Scholar 

  10. Morelos-Zaragoza, R. H. (2006). The art of error correcting coding. Hoboken: Wiley.

    Book  Google Scholar 

  11. Janani, M., Hedayat, A., Hunter, T. E., & Nosratinia, A. (2004). Coded cooperation in wireless communications: Space–time transmission and iterative decoding. IEEE Transactions on Signal Processing, 52(2), 362–371.

    Article  MathSciNet  Google Scholar 

  12. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space–time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hunter, T. E., Sanayei, S., & Nosratinia, A. (2006). Outage analysis of coded cooperation. IEEE Transactions on Information Theory, 52(2), 375–391.

    Article  MathSciNet  MATH  Google Scholar 

  14. Norouzi, M., Attang, E., Wu, Y., & Atkin, G. E. (2014). Symbol error rate analysis for cooperative diversity networks by distributed embedded space time code. In Proceedings of IEEE international conference on electro/information technology (pp. 422–426).

  15. Ishibashi, K., Ishii, K., & Ochiai, H. (2011). Dynamic coded cooperation using multiple turbo codes in wireless relay networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 197–207.

    Article  Google Scholar 

  16. Duyck, D., Boutros, J. J., & Moeneclaey, M. (2011). Low-density graph codes for coded cooperation on slow fading relay channels. IEEE Transactions on Information Theory, 57(7), 4202–4218.

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, T., & Yuan, J. (2010). Performance of iterative decoding for superposition modulation-based cooperative transmission. IEEE Transactions on Wireless Communications, 9(1), 51–59.

    Article  Google Scholar 

  18. Zhang, R., & Hanzo, L. (2009). Coding schemes for energy efficient multi-source cooperation aided uplink transmission. IEEE Signal Processing Letters, 16(5), 438–441.

    Article  Google Scholar 

  19. Ishii, K., Ishibashi, K., & Ochiai, H. (2011). Multilevel coded cooperation for multiple sources. IEEE Transactions on Wireless Communications, 10(12), 4258–4269.

    Article  Google Scholar 

  20. Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error-correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.

    Article  MATH  Google Scholar 

  21. Wachsmann, U., Fischer, R. F., & Huber, J. B. (1999). Multilevel codes: Theoretical concepts and practical design rules. IEEE Transactions on Information Theory, 45(5), 1361–1391.

    Article  MathSciNet  MATH  Google Scholar 

  22. Abotabl, A. A., & Nosratinia, A. (2014). Multi-level coding and multi-stage decoding in MAC, broadcast, and relay channel. In Proceedings of IEEE international symposium on information theory (pp. 96–100).

  23. Ungerboeck, G. (1982). Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 28(1), 55–67.

    Article  MathSciNet  MATH  Google Scholar 

  24. Baghaie, A., Martin, P., & Taylor, D. P. (2010). Grouped multilevel space-time trellis codes. IEEE Communications Letters, 14(3), 232–234.

    Article  Google Scholar 

  25. Sharma, S. (2012). A novel weighted multilevel space–time trellis coding scheme. Computers & Mathematics with Applications, 63(1), 280–287.

    Article  MathSciNet  MATH  Google Scholar 

  26. Jain, D., & Sharma, S. (2015). A novel grouped multilevel dynamic space–time trellis coding scheme. International Journal of Communication Systems, 28(6), 1168–1179.

    Article  Google Scholar 

  27. Johannesson, R., & Zigangirov, K. S. (2015). Fundamentals of convolutional coding. Hoboken: Wiley.

    Book  MATH  Google Scholar 

  28. Proakis, J. G., & Salehi, M. (2008). Digital communications. New York: McGraw-Hill.

    Google Scholar 

  29. Cover, T. M. (1972). Broadcast channels. IEEE Transactions on Information Theory, 18(1), 2–14.

    Article  MathSciNet  MATH  Google Scholar 

  30. Baghaie Abchuyeh, M. (2008). Multilevel space–time trellis codes for rayleigh fading channels. ME thesis, University of Canterbury, New Zealand.

  31. Forney, G. D., Jr. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3), 268–278.

    Article  MathSciNet  Google Scholar 

  32. Atay, F. (2009). Cooperative diversity relaying techniques in wireless communication networks. Ph.D. thesis, Carleton University, Canada.

  33. Zhao, B., & Valenti, M. C. (2005). Practical relay networks: A generalization of hybrid-ARQ. IEEE Journal on Selected Areas in Communication, 23(1), 7–18.

    Article  Google Scholar 

  34. Luo, J., Blum, R. S., Greenstein, L. J., Cimini, L. J., & Haimovich, A. M. (2004). New approaches for cooperative use of multiple antennas in ad hoc wireless networks. In Proceedings of IEEE vehicular technology conference (pp. 2769–2773).

  35. Ibrahim, A. S., Sadek, A. K., Su, W., & Liu, K. R. (2008). Cooperative communications with relay-selection: When to cooperate and whom to cooperate with? IEEE Transactions on Wireless Communications, 7(7), 2814–2827.

    Article  Google Scholar 

  36. Zhou, Z., Zhou, S., Cui, J. H., & Cui, S. (2008). Energy-efficient cooperative communication based on power control and selective single-relay in wireless sensor networks. IEEE Transactions on Wireless Communications, 7(8), 3066–3078.

    Article  Google Scholar 

  37. Jakllari, G., Krishnamurthy, S. V., Faloutsos, M., Krishnamurthy, P. V., & Ercetin, O. (2007). A cross-layer framework for exploiting virtual MISO links in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 6(6), 579–594.

    Article  Google Scholar 

  38. Ju, M., & Kim, I. M. (2009). ML performance analysis of the decode-and-forward protocol in multi-hop networks. In IEEE international conference on distributed computing systems workshops (pp. 499–503).

Download references

Acknowledgement

This research work is supported by Department of Electronics and Information Technology (DeitY), Ministry of Communications & Information Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakshi Aneja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aneja, S., Sharma, S. A Novel Cooperative Communication System Based on Multilevel Convolutional Codes. Wireless Pers Commun 95, 3539–3556 (2017). https://doi.org/10.1007/s11277-017-4011-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4011-z

Keywords

Navigation