Skip to main content
Log in

Ergodic Sum Rate Evaluation of Cellular Multiuser Two-Way Relaying with Beamforming and Antenna Selection Over Nakagami-m Fading

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we evaluate the ergodic sum rate (ESR) performance of cellular multiuser two-way relaying networks (CMTWRNs), where a multiantenna base station (BS) exchanges information bidirectionally with one of the several single-antenna mobile stations (MSs) with the help of a single-antenna relay terminal. Specifically, we adopt two transmission schemes (i.e., beamforming (BF) and antenna selection (AS)) at the BS and user selection at MSs to maximize the end-to-end signal-to-noise ratios. Under such transmission schemes, we derive new tight closed-form ESR expressions for the CMTWRNs in the presence of Nakagami-m fading environment. Further, based on the numerical results, we conduct a comparative study between the ESR performances of the two schemes, which indicates that the AS scheme provides approximately equal ESR performance as BF. Therefore, AS scheme can be a good alternative to the BF for the CMTWRNs as it reduces the transceiver complexity and signaling cost. Finally, simulation results are presented to corroborate our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amarasuriya, G., Tellambura, C., & Ardakani, M. (2012). Two-way amplify-and-forward multiple-input multiple-output relay networks with antenna selection. IEEE Journal on Selected Areas in Communications, 30(8), 1513–1529.

    Article  Google Scholar 

  2. Atapattu, S., Jing, Y., Jiang, H., & Tellambura, C. (2013). Relay selection schemes and performance analysis approximations for two-way networks. IEEE Transactions on Communications, 61(3), 987–998.

    Article  Google Scholar 

  3. Yang, K., Yang, N., Xing, C., & Wu, J. (2014). Relay antenna selection in MIMO two-way relay networks over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 63(5), 2349–2362.

    Article  Google Scholar 

  4. Yang, L., Qaraqe, K., Serpedin, E., & Gao, X. (2015). Performance analysis of two-way relaying networks with the \(N\) th worst relay selection over various fading channels. IEEE Transactions on Vehicular Technology, 64(7), 3321–3327.

    Google Scholar 

  5. Zhang, C., Ge, J., Li, J., Rui, Y., & Guizani, M. (2015). A unified approach for calculating the outage performance of two-way AF relaying over fading channels. IEEE Transactions on Vehicular Technology, 64(3), 1218–1229.

    Article  Google Scholar 

  6. Shukla, M. K., Yadav, S., & Purohit, N. (2016). Performance evaluation and optimization of traffic-aware cellular multiuser two-way relay networks over Nakagami-m fading. IEEE Systems Journal. doi:10.1109/JSYST.2016.2597879.

    Google Scholar 

  7. Upadhyay, P. K., & Yadav, S. (2013). On the performance of cellular two-way relay systems with analog network coding and multiuser diversity. Wireless Personal Communications, 72(4), 2705–2720.

    Article  Google Scholar 

  8. Li, J., Zheng, Y., Ge, J., Zhang, C., Gong, F. K., & Guizani, M. (2016). Low-complexity opportunistic transmission schemes for multi-user multi-relay asymmetric bidirectional relaying networks. IEEE Transactions on Wireless Communications, 15(8), 5167–5181.

    Article  Google Scholar 

  9. Yadav, S., Upadhyay, P. K., & Prakriya, S. (2014). Performance evaluation and optimization for two-way relaying with multi-antenna sources. IEEE Transactions on Vehicular Technology, 63(6), 2982–2989.

    Article  Google Scholar 

  10. Han, Y., Ting, S. H., Ho, C. K., & Chin, W. H. (2009). Performance bounds for two-way amplify-and-forward relaying. IEEE Transactions on Wireless Communications, 8(1), 432–439.

    Article  Google Scholar 

  11. Cheng, W., Ghogho, M., Huang, Q., Ma, D., & Wei, J. (2011). Maximizing the sum-rate of amplify-and-forward two-way relaying networks. IEEE Signal Processing Letters, 18(11), 635–638.

    Article  Google Scholar 

  12. Amarasuriya, G., Tellambura, C., & Ardakani, M. (2013). Sum rate analysis of two-way MIMO AF relay networks with zero-forcing. IEEE Transactions on Wireless Communications, 12(9), 4456–4469.

    Article  Google Scholar 

  13. Jin, S., Liang, X., Wong, K. K., Gao, X., & Zhu, Q. (2015). Ergodic rate analysis for multipair massive MIMO two-way relay networks. IEEE Transactions on Wireless Communications, 14(3), 1480–1491.

    Article  Google Scholar 

  14. Wang, X., Yang, N., Zhang, H., Hoang, T. M., & Gulliver, T. A. (2016). Generalised selection at multi-antenna sources in two-way relay networks. IET Communications, 10(7), 824–831.

    Article  Google Scholar 

  15. Park, J. C., Park, J. B., Lee, J. H., Wang, J. S., & Kim, Y. H. (2011). Analysis on average sum rate of two-way relaying with simple analog network coding in Nakagami fading channels. In Proceedings of IEEE vehicular technology conference (pp. 1–5).

  16. AliHemmati, R., & Shahbazpanahi, S. (2015). Sum-rate optimal network beamforming and subcarrier power allocation for multi-carrier asynchronous two-way relay networks. IEEE Transactions on Signal Processing, 63(15), 4129–4143.

    Article  MathSciNet  Google Scholar 

  17. Li, T., Xiong, K., Dong, Y., & Fan, P. (2015). Opportunistic network coding scheme for two-way relay wireless networks: A sum-rate maximization approach. IEEE Transactions on Vehicular Technology, 64(6), 2732–2738.

    Article  Google Scholar 

  18. Wu, H., Wang, L., Wang, X., & You, X. (2014). Asymptotic and non-asymptotic analysis of uplink sum rate for relay-assisted MIMO cellular systems. IEEE Transactions on Signal Processing, 62(4), 1348–1360.

    Article  MathSciNet  Google Scholar 

  19. Yang, J., Fan, P., Duong, T. Q., & Lei, X. (2011). Exact performance of two-way AF relaying in Nakagami-m fading environment. IEEE Transactions on Wireless Communications, 10(3), 980–987.

    Article  Google Scholar 

  20. Fang, Z., Yuan, X., Wang, X., & Li, C. (2016). Non-regenerative cellular two-way relaying with large-scale antenna arrays. IEEE Transactions on Vehicular Technology, 65(7), 4959–4972.

    Article  Google Scholar 

  21. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Tables of integrals, series and products (6th ed.). New York: Academic Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suneel Yadav.

Appendices

Appendix 1: Proof of Theorem 1

The nth-order moment of the end-to-end SNR \(\varLambda _{ab_{k^{*}}}\) is given by

$$\begin{aligned} {\mathbb {E}}\left\{ \varLambda _{ab_{k^{*}}}^{n} \right\} =\int _{0}^{\infty }z^{n}f_{\varLambda _{ab_{k^{*}}}}(z)dz. \end{aligned}$$
(29)

To obtain \({\mathbb {E}}\left\{ \varLambda _{ab_{k^{*}}}^{n} \right\}\), we first need to derive the PDF of \(\varLambda _{ab_{k^{*}}}\), which can be evaluated by deriving the CDF of \(\varLambda _{ab_{k^{*}}}\) as

$$\begin{aligned} F_{\varLambda _{ab_{k^{*}}}}(z)&=\text {Pr}\left[ \varLambda _{ab_{k^{*}}}<\lambda _{1}z \right] \nonumber \\&=\text {Pr}\left[ \varLambda _{1a}<\frac{\lambda _{1}\varLambda _{1b}z}{\varLambda _{1b}-\lambda _{1}z}\big | \varLambda _{1b} \right] \nonumber \\&=\int _{0}^{\lambda _{1}z}f_{\varLambda _{1b}}(y)\int _{0}^{\infty }f_{\varLambda _{1a}}(x)dx\,dy+\int _{\lambda _{1}z}^{\infty }f_{\varLambda _{1b}}(y)\int _{0}^{\frac{\lambda _{1}zy}{y-\lambda _{1}z} }f_{\varLambda _{1a}}(x)dx\,dy , \end{aligned}$$
(30)

where \(\lambda _{1}=\frac{P_{b}+P_{r}}{P_{r}}\). Now, invoking the PDFs of \(\varLambda _{1a}\) and \(\varLambda _{1b}\) from (9) and (10), respectively into (30), and performing the required integrations with the aid of [21, eqs. (8.350.1), (8.352.6)], the CDF of \(\varLambda _{ab_{k^{*}}}\) can be obtained as

$$\begin{aligned} F_{\varLambda _{ab_{k^{*}}}}(z)&=\frac{K\left( \frac{m_{b}}{{\overline{\varLambda }}_{1b}}\right) ^{m_{b}}}{\varGamma (m_{b})}\sum _{p=0}^{K-1}\sum _{r=0}^{p(m_{b}-1)}{K-1 \atopwithdelims ()p}(-1)^{p}b_{r}^{p}\Biggl [ \left( \frac{{\overline{\varLambda }}_{1b}}{m_{b}(p+1)}\right) ^{m_{b}+r}\!\!\!\!\varGamma (m_{b}+r) \nonumber \\&\quad -\,\sum _{m=0}^{m_{a}N_{a}-1}\sum _{j=0}^{m_{b}+r-1}\sum _{i=0}^{m}\frac{{m_{b}+r-1 \atopwithdelims ()j}}{m!}{m \atopwithdelims ()i}\left( \frac{m_{a}}{{\overline{\varLambda }}_{1a}} \!\right) ^{m}{\text {e}}^{-\alpha _{1}z}\left( \lambda _{1}z\right) ^{\delta } \nonumber \\&\quad \times \,2\left( \frac{{\overline{\varLambda }}_{1b}m_{a}}{{\overline{\varLambda }}_{1a}m_{b}(p+1)} \right) ^{\frac{j-i+1}{2}}{\mathcal {K}}_{j-i+1}(2\beta _{1}z)\Biggr ], \end{aligned}$$
(31)

where \(\alpha _{1}=\lambda _{1}\left( \frac{m_{a}}{{\overline{\varLambda }}_{1a}}+\frac{m_{b}(p+1)}{{\overline{\varLambda }}_{1b}}\right)\), \(\beta _{1}=2\sqrt{\!\frac{m_{a}m_{b}\lambda _{1}^{2}(p+1)}{{\overline{\varLambda }}_{1a}{\overline{\varLambda }}_{1b}}}\), and \(\delta =m_{b}+r+m\). Then, differentiating (31) with respect to z and applying the derivative property of \({\mathcal {K}}_{\nu }(\cdot )\) [21, eq. (8.486.11)], the corresponding PDF can be expressed as

$$\begin{aligned} f_{\varLambda _{ab_{k^{*}}}}(z)&=\frac{K\left( \frac{m_{b}}{{\overline{\varLambda }}_{1b}}\right) ^{m_{b}}}{\varGamma (m_{b})}\sum _{p=0}^{K-1}\sum _{r=0}^{p(m_{b}-1)}{K-1 \atopwithdelims ()p}(-1)^{p}b_{r}^{p}\sum _{m=0}^{m_{a}N_{a}-1} \nonumber \\&\quad \,\times \sum _{j=0}^{m_{b}+r-1}\sum _{i=0}^{m}\!\frac{{m_{b}+r-1 \atopwithdelims ()j}}{m!}{m \atopwithdelims ()i}\left( \frac{m_{a}}{{\overline{\varLambda }}_{1a}} \right) ^{m}\left( \lambda _{1}z\right) ^{\delta } 2\!\left( \frac{{\overline{\varLambda }}_{1b}m_{a}}{{\overline{\varLambda }}_{1a}m_{b}(p+1)} \right) ^{\frac{j-i+1}{2}} \nonumber \\&\quad \,\times \text {e}^{-\alpha _{1}z}\Biggl [ \alpha _{1}{\mathcal {K}}_{j-i+1}(\beta _{1}z)-\frac{\delta }{z}{\mathcal {K}}_{j-i+1}(\beta _{1}z)+\frac{\beta _{1}}{2}( {\mathcal {K}}_{j-i}(\beta _{1}z)+{\mathcal {K}}_{j-i+2}(\beta _{1}z))\Biggr ]. \end{aligned}$$
(32)

Invoking \(f_{\varLambda _{ab_{k^{*}}}}(z)\) from (32) into (24) and simplifying the integral with the help of [21, eq. (6.621.3)], we can get \({\mathbb {E}}\left\{ \varLambda _{ab_{k^{*}}}^{n} \right\}\) as given in (24).

Appendix 2: Proof of Theorem 2

The \(n^{\text {th}}\)-order moment of the end-to-end SNR \(\varPsi _{a_{l^{*}}b_{k^{*}}}\) is given by

$$\begin{aligned} {\mathbb {E}}\left\{ \varPsi _{a_{l^{*}}b_{k^{*}}}^{n} \right\} =\int _{0}^{\infty }z^{n}f_{\varPsi _{a_{l^{*}}b_{k^{*}}}}(z)dz. \end{aligned}$$
(33)

To obtain \({\mathbb {E}}\left\{ \varPsi _{a_{l^{*}}b_{k^{*}}}^{n}\right\}\), we first need to derive the PDF of \(\varPsi _{a_{l^{*}}b_{k^{*}}}\), which can be evaluated by deriving the CDF of \(\varPsi _{a_{l^{*}}b_{k^{*}}}\) as

$$\begin{aligned} F_{\varPsi _{a_{l^{*}}b_{k^{*}}}}(z)&=\text {Pr}\left[ \varPsi _{a_{l^{*}}b_{k^{*}}}<\lambda _{1}z \right] \nonumber \\&=\text {Pr}\left[ \varPsi _{1a}<\frac{\lambda _{1}\varPsi _{1b}z}{\varPsi _{1b}-\lambda _{1}z}\big | \varPsi _{1b} \right] \nonumber \\&=\int _{0}^{\lambda _{1}z}f_{\varPsi _{1b}}(y)\int _{0}^{\infty }f_{\varPsi _{1a}}(x)dx\,dy+\int _{\lambda _{1}z}^{\infty }f_{\varPsi _{1b}}(y)\int _{0}^{\frac{\lambda _{1}zy}{y-\lambda _{1}z} }f_{\varPsi _{1a}}(x)dx\,dy. \end{aligned}$$
(34)

Substituting the PDFs of \(\varPsi _{1a}\) and \(\varPsi _{1b}\) from (18) and (19), respectively into (34), and then performing the required integration with the help of [21, eqs. (8.350.1), (8.352.6)], the CDF of \(\varPsi _{a_{l^{*}}b_{k^{*}}}\) after some mathematical simplifications can be obtained as

$$\begin{aligned} F_{\varPsi _{a_{l^{*}}b_{k^{*}}}}(z)&=\frac{K\left( \frac{m_{b}}{{\overline{\varPsi }}_{1b}}\right) ^{m_{b}}}{\varGamma (m_{b})}\sum _{p=0}^{K-1}{K-1 \atopwithdelims ()p}(-1)^{p}\sum _{r=0}^{p(m_{b}-1)}b_{r}^{p}\Biggl [ \left( \!\frac{{\overline{\varPsi }}_{1b}}{m_{b}(p+1)}\right) ^{m_{b}+r} \nonumber \\&\quad \times \,\Upsilon \left( m_{b}+r,\frac{m_{b}(p+1)\lambda _{1}z}{{\overline{\varPsi }}_{1b}}\right) +\frac{N_{a}\left( \frac{m_{a}}{{\overline{\varPsi }}_{1a}}\right) ^{m_{a}}}{\varGamma (m_{a})}\sum _{s=0}^{N_{a}-1}{N_{a}-1 \atopwithdelims ()s}(-1)^{s}\sum _{t=0}^{s(m_{a}-1)} \nonumber \\&\quad \times \,c_{t}^{s} \left( \!\frac{{\overline{\varPsi }}_{1a}}{m_{a}(s+1)}\!\right) ^{m_{a}+t}\!\!\!\varGamma (m_{a}+t)\Biggl (\!\left( \frac{{\overline{\varPsi }}_{1b}}{m_{b}(p+1)}\!\right) ^{m_{b}+r}\!\!\!\varGamma \left( \!m_{b}+r,\frac{m_{b}(p+1)\lambda _{1}z}{{\overline{\varPsi }}_{1b}}\!\right) \nonumber \\&\quad -\,2\sum _{m=0}^{m_{a}+t-1}\sum _{j=0}^{m_{b}+r-1}\sum _{i=0}^{m}\!\frac{{m_{b}+r-1 \atopwithdelims ()j}{m \atopwithdelims ()i}}{m!}\left( \frac{m_{a}(s+1)}{{\overline{\varPsi }}_{1a}} \right) ^{m}{\text {e}}^{-\sigma _{1}z}\left( \lambda _{1}z \right) ^{m_{b}+r+m} \nonumber \\&\quad \times \,\left( \frac{{\overline{\varPsi }}_{1b}m_{a}(s+1)}{{\overline{\varPsi }}_{1a}m_{b}(p+1)}\right) ^{\frac{j-i+1}{2}}{\mathcal {K}}_{j-i+1}(\rho _{1}z)\Biggr )\Biggr ], \end{aligned}$$
(35)

where \(\sigma _{1}=\lambda _{1}\left( \frac{m_{a}(s+1)}{{\overline{\varPsi }}_{1a}}+\frac{m_{b}(p+1)}{{\overline{\varPsi }}_{1b}}\right)\) and \(\rho _{1}=2\sqrt{\frac{m_{a}m_{b}(p+1)(s+1)\lambda _{1}^{2}}{{\overline{\varPsi }}_{1a}{\overline{\varPsi }}_{1b}}}\). Further, differentiating (35) with respect to z and applying the derivative property of \({\mathcal {K}}_{\nu }(\cdot )\) [21, eq. (8.486.11)], the corresponding PDF can be expressed as

$$\begin{aligned} f_{\varPsi _{a_{l^{*}}b_{k^{*}}}}(z)&={\mathcal {D}}_{1}\left( \frac{z^{m}m_{b}(p+1)\lambda _{1}}{{\overline{\varPsi }}_{1b}}{\text {e}}^{-\frac{m_{b}(p+1)\lambda _{1}z}{{\overline{\varPsi }}_{1b}}}-mz^{m-1}{\text {e}}^{-\frac{m_{b}(p+1)\lambda _{1}z}{{\overline{\varLambda }}_{1b}}}\right) \nonumber \\&\quad +\,{\mathcal {D}}_{1}{\mathcal {D}}_{2}\left( mz^{m-1}{\text {e}}^{-\frac{m_{b}(p+1)\lambda _{1}z}{{\overline{\varPsi }}_{1b}}}-\frac{z^{m}m_{b}(p+1)\lambda _{1}}{{\overline{\varPsi }}_{1b}}{\text {e}}^{-\frac{m_{b}(p+1)\lambda _{1}z}{{\overline{\varPsi }}_{1b}}}\right) \nonumber \\&\quad +\,{\mathcal {D}}_{3}z^{m_{b}+r+m}{{\text {e}}}^{-\left( \frac{m_{a}(s+1)}{{\overline{\varPsi }}_{1a}}+\frac{m_{b}(p+1)}{{\overline{\varPsi }}_{1b}}\right) \lambda _{1}z}\bigg [ \sigma _{1}{\mathcal {K}}_{j-i+1}(\rho _{1}z ) \nonumber \\&\quad -\,(m_{b}+r+m) z^{-1}{\mathcal {K}}_{j-i+1}(\rho _{1}z )+\frac{\rho _{1}}{2}\bigg ({\mathcal {K}}_{j-i}(\rho _{1}z)+{\mathcal {K}}_{j-i+2}(\rho _{1}z)\bigg )\bigg ], \end{aligned}$$
(36)

where

$$\begin{aligned} {\mathcal {D}}_{1}&=\frac{K\left( \frac{m_{b}}{{\overline{\varPsi }}_{1b}}\right) ^{m_{b}}}{\varGamma (m_{b})}\sum _{p=0}^{K-1}{K-1 \atopwithdelims ()p}(-1)^{p}\sum _{r=0}^{p(m_{b}-1)}b_{r}^{p}\left( \frac{{\overline{\varPsi }}_{1b}}{m_{b}(p+1)}\right) ^{m_{b}+r} \nonumber \\&\quad \times \,\varGamma (m_{b}+r)\sum _{m=0}^{m_{b}+r-1}\frac{1}{m!}\left( \frac{m_{b}(p+1)\lambda _{1}}{{\overline{\varPsi }}_{1b}}\right) ^{m} \end{aligned}$$
(37)
$$\begin{aligned} {\mathcal {D}}_{2}=\frac{N_{a}\left( \frac{m_{a}}{{\overline{\varPsi }}_{1a}}\right) ^{m_{a}}}{\varGamma (m_{a})}\sum _{s=0}^{N_{a}-1}{N_{a}-1 \atopwithdelims ()s}(-1)^{s}\sum _{t=0}^{s(m_{a}-1)}c_{t}^{s}\left( \frac{{\overline{\varPsi }}_{1a}}{m_{a}(s+1)}\right) ^{m_{a}+t}\!\!\!\varGamma (m_{a}+t) \end{aligned}$$
(38)
$$\begin{aligned} {\mathcal {D}}_{3}&={\mathcal {D}}_{2}\frac{K\left( \frac{m_{b}}{{\overline{\varPsi }}_{1b}}\right) ^{m_{b}}}{\varGamma (m_{b})}\sum _{p=0}^{K-1}{K-1 \atopwithdelims ()p}(-1)^{p}\sum _{r=0}^{p(m_{b}-1)}b_{r}^{p}\sum _{m=0}^{m_{a}+t-1}\sum _{j=0}^{m_{b}+r-1} \nonumber \\&\quad \times \,\sum _{i=0}^{m}\frac{{m \atopwithdelims ()i}{m_{b}+r-1 \atopwithdelims ()j}}{m!}\left( \frac{m_{a}(s+1)}{{\overline{\varPsi }}_{1a}}\right) ^{m}2\left( \frac{{\overline{\varPsi }}_{1b}m_{a}(s+1)}{{\overline{\varPsi }}_{1a}m_{b}(p+1)}\right) ^{\frac{j-i+1}{2}}\!\!\!\lambda _{1}^{m_{b}+r+m} \end{aligned}$$
(39)

Now, substituting the PDF of \(f_{\varPsi _{a_{l^{*}}b_{k^{*}}}}(z)\) from (36) into (33) and evaluating the integral with the help of [21, eq. (6.621.3)], we can get \({\mathbb {E}}\left\{ \varPsi _{a_{l^{*}}b_{k^{*}}}^{n} \right\}\) as shown in (28).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, M.K., Yadav, S. & Purohit, N. Ergodic Sum Rate Evaluation of Cellular Multiuser Two-Way Relaying with Beamforming and Antenna Selection Over Nakagami-m Fading. Wireless Pers Commun 95, 743–760 (2017). https://doi.org/10.1007/s11277-016-3795-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3795-6

Keywords

Navigation