Skip to main content
Log in

Signal Integrity Performance Analysis of Mutual Coupling Reduction Techniques Using DGS in High Speed Printed Circuit Boards

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this article, the Signal Integrity performance analysis of mutual coupling reduction with defective ground structures (DGS) in high speed PCBs has been investigated. The performances of these structures are analyzed, in terms of Time domain, Error Vector Magnitude (EVM), eye pattern and timing jitter. A NRZ test signal with Quadrature Phase Shift keying modulation, with a carrier frequency of 3.5 GHz is used for the EVM measurements. From the EVM measurements, it is observed that the PCB with Circular DGS has the lowest EVM of 1.195 % rms compared to other techniques. Further, the eye pattern and jitter analysis show that the circular DGS has the lowest jitter value of 8 ps at 1Gbps data rate. Finally, the electromagnetic compatibility of proposed method is checked with the surface current distribution and radiated emission analysis. These investigations show that the adoption of the circular DGS in the high speed PCB design, reduces the spacing between two traces without degrading the signal quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Montrose, M. I. (2000). Printed circuit board design techniques for EMC compliance (pp. 131–142). New York: Wiley.

    Book  Google Scholar 

  2. Dobkin, R., Morgenshtein, A., Kolodny, A., & Ginosar, R. (2008). Parallel vs. serial on-chip communication. In Proceedings of the International Workshop on System Level Interconnect Prediction (pp. 43–50). New York, USA: ACM.

  3. Gazizov, T. R. (2001). Far-end crosstalk reduction in double-layered dielectric interconnects. IEEE Transactions on Electromagnetic Compatibility, 43(4), 566–572.

    Article  Google Scholar 

  4. Brooks, D. (2003). Signal integrity issues and printed circuit board design (pp. 233–234). New York: Prentice Hall.

    Google Scholar 

  5. Zhi, L., Qiang, W. & Changsheng, S. (2002). Application of guard traces with vias in the RF PCB layout. 3rd International Symposium on Electromagnetic Compatibility, Beijing, China, May 21–24, (pp. 771–774).

  6. Suntives, A., Khajooeizadeh, A. & Abhari, R. (2006). Using via fences for crosstalk reduction in PCB circuits. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility (EMC'06), August 2006 (pp. 34–37).

  7. Lee, K., Lee, H.-B., Jung, H.-K., Sim, J.-Y. & Park, H.-J. (2007). Serpentine guard trace to reduce far-end crosstalk and even-odd mode velocity mismatch of microstrip lines by more than 40%. In Proceedings 57th Electronic Components and Technology Conference (pp. 329–332). Reno, NV.

  8. Huang, W.-T., Lu, C.-H., & Lin, D.-B. (2010). Suppression of crosstalk using serpentine guard trace vias. Progress In Electromagnetics Research, 109, 37–61.

    Article  Google Scholar 

  9. Lin, D.-B., Wang, C.-K., Lu, C.-H. & Huang, W.-T. (2011). Using rectangular shape resonators to improve the far-end crosstalk of the coupled microstrip lines. In PIERS Proceedings (pp. 1612–1616). Maarakesh, Morocco.

  10. Kazerooni, M., Salari, M. A., & Cheldavi, A. (2012). A novel method for crosstalk reduction in coupled pair microstrip lines. International Journal of RF and Microwave Computer-Aided Engineering, 22(2), 167–174.

    Article  Google Scholar 

  11. Henridass, A., Sindhadevi, M., Karthik, N., Alsath, M. G. N., Kumar, R. R., & Malathi, K. (2012). Defective ground plane structure for broadband crosstalk reduction in PCBs. IEEE Explore, ICCA. doi:10.1109/ICCCA.2012.6179208.

    Google Scholar 

  12. Sindhadevi, M., Malathi, K., Henridass, A., & Shrivastav, A. K. (2013). Crosstalk reduction using defective ground plane structures in RF printed circuit boards. Arabian Journal for Science and Engineering. doi:10.1007/s13369-013-0720-0.

    Google Scholar 

  13. Application Note, "Agilent 8 Hints for Making and Interpreting EVM Measurements" Literature Number 5989-3144EN. cp.literature.agilent.com/litweb/pdf/5989-3144EN.pdf.

  14. Jennings, J. J., Bateman, A., & McGeehan, J. P. (1999). Adjacent channel power and error-vector magnitude performance of reduced complexity CALLUM systems. IEE Proc. Commun., 146(5), 297–302.

    Article  Google Scholar 

  15. Schreurs, D., O’Droma, M., Goacher, A. A., & Gadringer, M. (2009). RF power amplifier behavioral modeling. Cambridge: Cambridge University Press.

    Google Scholar 

  16. Gary, B. (2008). A introduction to defective ground structures in microstrip circuits (pp. 50–54). High Frequency Electronics, Summit Technical media.

  17. Park, H. H., Jung, J.-H., Jang, T.-S., Han, S.-T., Woo, S.-J., Song, S.-H. & Park, H.-B. (2009). EMI prediction methodology for PCB Excited by switching noise of IC (Vol. 1, pp. 341–344). IEICE.

  18. Choi, U., Kim, Y.-J., & Kim, Y.-S. (2009). Crosstalk reduction in printed circuit boards using irregularly-spaced vias in a guard trace over a slotted ground plane. In European conference on circuit theory and design (pp. 794–797). IEEE Explore.

  19. Hall, S. H., Hall, G. W., & McCall, J. A. (2000). High speed digital system design: A handbook of interconnect theory and design practices. New York: Wiley.

    Google Scholar 

  20. Application Note, "Agilent vector signal analysis basics" Literature Number 5989-1121EN. cp.literature.agilent.com/Iitweb/pdf/5982-1121EN.pdf.

  21. Roy, R., Kishore, N., & Gupta, N. (2014). Comparative study of crosstalk reduction in coupled pair microstrip lines using DMS. International Journal of Engineering Research & Technology (IJERT, 3(10), 721–724.

    Google Scholar 

  22. Gil, I., & Fernández-García, R. (2014). Electromagnetic interference reduction in printed circuit boards by using metamaterials: A conduction and radiation impact analysis. Journal of Electromagnetic Waves and Applications, 28(3), 378–388.

    Article  Google Scholar 

  23. Weng, L. H., Guo, Y. C., Shi, X. W., & Chen, X. Q. (2008). An overview on defected ground structure. Progress In Electromagnetics Research B, 7, 173–189.

    Article  Google Scholar 

  24. Guha, Debatosh, & Yahia Antar, M. M. (2011). Microstrip and printed antennas—New trends, techniques and applications. Hoboken: Wiley.

    Google Scholar 

  25. Maloratsky, L. G. (2009) Microstrip circuits with modified ground plane. High Frequency Electronics, Summit Technical media, 38–46.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthuramalingam Sindhadevi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindhadevi, M., Malathi, K., Henridass, A. et al. Signal Integrity Performance Analysis of Mutual Coupling Reduction Techniques Using DGS in High Speed Printed Circuit Boards. Wireless Pers Commun 94, 3233–3249 (2017). https://doi.org/10.1007/s11277-016-3774-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3774-y

Keywords

Navigation