Skip to main content
Log in

Performance Analysis of Cross QAM with MRC Over Dual Correlated Nakagami-m, -n, and -q Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

An approximation of the symbol error probability (SEP) of the cross QAM (XQAM) signal in a single-input multiple-output system over dual correlated Rayleigh, Nakagami-m, Nakagami-n (Rice) and Nakagami-q (Hoyt) fading channels is derived. The maximal-ratio combining is considered as the diversity technique, and the average SEP is obtained by using the moment generating function (MGF). Arbitrarily tight approximations for the Gaussian Q-function and the generalized Gaussian Q-function are obtained from the numerical analysis technique; the trapezoidal rule. The resulting expressions consist of a finite sum of MGF’s which are easily evaluated and accurate enough. In addition, a transformation technique is used to derive independent channels from the correlated channels which are then used in the analysis. The simulation results show excellent agreement with the derived approximation expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smith, J. G. (1975). Odd-bit quadrature amplitude-shift keying. IEEE Transactions on Communications, 23(3), 385–389.

    Article  Google Scholar 

  2. Panigrahi, S., & Le-Ngoc, T. (2005, May). Fine-granularity loading schemes using adaptive Reed–Solomon coding for discrete multitone modulation systems. In IEEE international conference on communications (Vol. 2, pp. 1352–1356).

  3. Ahrens, A., & Lange, C. (2006). Bit and power loading for wireline multicarrier transmission systems. Transactions on Advanced Research, 2(1), 3–9.

    Google Scholar 

  4. Zwingelstein-Colin, M., Gazalet, M., & Gharbi, M. (2003). Non-iterative bit-loading algorithm for ADSL-type DMT applications. IEE Proceedings Communications, 150(6), 414–418.

    Article  Google Scholar 

  5. Sternad, M., & Falahati, S. (2004, September). Maximizing throughput with adaptive MQAM based on imperfect channel predictions. In IEEE international symposium on personal, indoor and mobile radio communications, PIMRC 2004 (Vol. 3, pp. 2289–2293).

  6. Wang, W., Ottosson, T., Sternad, M., Ahlen, A., & Svensson, A. (2003, Fall). Impact of multiuser diversity and channel variability on adaptive OFDM. In IEEE vehicular technology conference (Vol. 1, pp. 547–551).

  7. ITU-T Std. G.992.1. (1999). Asymmetric digital subscriber line (ADSL) transceivers.

  8. ITU-T Std. G.993.1. (2004). Very high speed digital subscriber line transceivers.

  9. ETSI Std. EN 300 429. (1998). Digital video broadcasting (DVB); framing structure, channel coding and modulation for cable systems.

  10. Simon, M. K., & Alouini, M.-S. (2005). Digital communications over fading. New York: Wiley-Interscience.

    Google Scholar 

  11. Nakagami, M. (1960). The m-distribution—A general formula of intensity distribution of rapid fading. In W. G. Hoffman (Ed.), Statistical methods in radio wave propagation. Oxford: Pergamon.

    Google Scholar 

  12. Salz, J., & Winters, J. (1994). Effect of fading correlation on adaptive arrays in digital mobile radio. IEEE Transactions on Vehicular Technology, 43(4), 1049–1057.

    Article  Google Scholar 

  13. Aalo, V. A. (1995). Performance of maximal-ratio diversity systems in a correlated Nakagami fading environment. IEEE Transactions on Communications, 43(8), 2360–2369.

    Article  Google Scholar 

  14. Abu-Dayya, A. A., & Beaulieu, N. C. (1994). Switched diversity on microcellular Ricean channels. IEEE Transactions on Vehicular Technology, 43(4), 970–976.

    Article  Google Scholar 

  15. Al-Hussaini, E. K., & Al-Bassiouni, A. M. (1985). Performance of MRC diversity systems for the detection of signals with Nakagami fading. IEEE Transactions on Communications, 33(12), 1315–1319.

    Article  MathSciNet  Google Scholar 

  16. Bithas, P. S., & Mathiopoulos, P. T. (2007). Performance analysis of SSC diversity receivers over correlated Ricean fading satellite channels. EURASIP Journal on Wireless Communications and Networking, 2007, 53.

    Article  Google Scholar 

  17. Zhang, X.-C., Yu, H., & Wei, G. (2010). Exact symbol error probability of cross-QAM in AWGN and fading channels. EURASIP Journal on Wireless Communications and Networking, 2010, 94.

    Google Scholar 

  18. Yu, H., Zhao, Y., Zhang, J., & Wang, Y. (2013). SEP performance of cross QAM signaling with MRC over fading channels and its arbitrarily tight approximation. Wireless Personal Communications, 69(4), 1567–1582.

    Article  Google Scholar 

  19. Yu, H., Wei, G., Ji, F., & Zhang, X. (2011). On the error probability of cross-QAM with MRC reception over generalized η − μ fading channels. IEEE Transactions on Vehicular Technology, 60(6), 2631–2643.

    Article  Google Scholar 

  20. Chiani, M., Dardari, D., & Simon, M. K. (2003). New exponential bounds and approximations for the computation of error probability in fading channels. IEEE Transactions on Wireless Communications, 2(7), 840–845.

    Article  Google Scholar 

  21. Xu, H. (2009). Symbol error probability for generalized selection combining reception of M-QAM. SAIEE Africa Research Journal, 100(3), 68–71.

    Google Scholar 

  22. Jovkovic, S., Panic, S., Stefanovic, M., Spalevic, P., & Krstic, D. (2010). Performance analysis of SSC diversity receiver over correlated Ricean fading channels in the presence of cochannel interference. EURASIP Journal on Wireless Communications and Networking, 2010, 39.

    Article  Google Scholar 

  23. Karagiannidis, G. K. (2003). Performance analysis of SIR-Based dual selection diversity over correlated Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 52(5), 1207–1216.

    Article  Google Scholar 

  24. Veeravalli, V. (2001). On performance analysis for signaling on correlated fading channels. IEEE Transactions on Communications, 49(11), 1879–1883.

    Article  MATH  Google Scholar 

  25. Fang, L., Bi, G., & Kot, A. (2000). New method of performance analysis for diversity reception with correlated Rayleigh-fading signals. IEEE Transactions on Vehicular Technology, 49(5), 1807–1812.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Wazeer Kamdar.

Appendix

Appendix

In a Nakagami-n fading channel the received signal from ith path is given by

$$ y_{i} = \sqrt {E_{s} } h_{i} x + n_{i} ,\quad i = 1,2 $$
(34)

where \( h_{i} = (h_{i}^{I} + jh_{i}^{Q} ) + (h_{D}^{{I_{i} }} + jh_{D}^{{Q_{i} }} ). \)

The transformation matrix \( \varvec{T} \) is given by [25]

$$ \varvec{T} = \left[ {\begin{array}{*{20}c} {\frac{\sqrt 2 }{2}} & {\frac{\sqrt 2 }{2}} \\ { - \frac{\sqrt 2 }{2}} & {\frac{\sqrt 2 }{2}} \\ \end{array} } \right] $$
(35)

Then we define another two random variables as

$$ \left[ {\begin{array}{*{20}c} {y_{3} } \\ {y_{4} } \\ \end{array} } \right] = \varvec{T}\left[ {\begin{array}{*{20}c} {y_{1} } \\ {y_{2} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\frac{\sqrt 2 }{2}y_{1} + \frac{\sqrt 2 }{2}y_{2} } \\ { - \frac{\sqrt 2 }{2}y_{1} + \frac{\sqrt 2 }{2}y_{2} } \\ \end{array} } \right] $$
(36)

Based on (36) \( y_{3} \) and \( y_{4} \) are expressed as

$$ y_{3} = \left( {h_{3}^{I} + jh_{3}^{Q} } \right)x + n_{3} $$
(37)
$$ y_{4} = \left( {h_{4}^{I} + jh_{4}^{Q} } \right)x + n_{4} $$
(38)

where

$$ h_{3}^{I} = \sqrt {E_{s} } \left[ {\left( {\frac{\sqrt 2 }{2}h_{1}^{I} + \frac{\sqrt 2 }{2}h_{2}^{I} } \right) + \frac{\sqrt 2 }{2}\left( {h_{D}^{{I_{1} }} + h_{D}^{{I_{2} }} } \right)} \right] $$
(39a)
$$ h_{3}^{Q} = \sqrt {E_{s} } \left[ {\left( {\frac{\sqrt 2 }{2}h_{1}^{Q} + \frac{\sqrt 2 }{2}h_{2}^{Q} } \right) + \frac{\sqrt 2 }{2}\left( {h_{D}^{{Q_{1} }} + h_{D}^{{Q_{2} }} } \right)} \right] $$
(39b)
$$ h_{4}^{I} = \sqrt {E_{s} } \left[ {\left( { - \frac{\sqrt 2 }{2}h_{1}^{I} + \frac{\sqrt 2 }{2}h_{2}^{I} } \right) + \frac{\sqrt 2 }{2}\left( { - h_{D}^{{I_{1} }} + h_{D}^{{I_{2} }} } \right)} \right] $$
(39c)
$$ h_{4}^{Q} = \sqrt {E_{s} } \left[ {\left( { - \frac{\sqrt 2 }{2}h_{1}^{Q} + \frac{\sqrt 2 }{2}h_{2}^{Q} } \right) + \frac{\sqrt 2 }{2}\left( { - h_{D}^{{Q_{1} }} + h_{D}^{{Q_{2} }} } \right)} \right] $$
(39d)
$$ n_{3} = \frac{\sqrt 2 }{2}n_{1} + \frac{\sqrt 2 }{2}n_{2} $$
(39e)
$$ n_{4} = - \frac{\sqrt 2 }{2}n_{1} + \frac{\sqrt 2 }{2}n_{2} $$
(39f)

Since \( E[h_{1}^{I} ] = E[h_{2}^{I} ] = 0 \) and \( E[(h_{1}^{I} )^{2} ] = E[(h_{2}^{I} )^{2} ] = \sigma^{2} \) the covariance of \( h_{3}^{I} \) and \( h_{4}^{I} \) can be calculated by

$$ C_{{h_{3}^{I} h_{4}^{I} }} = E\left[ {h_{3}^{I} h_{4}^{I} } \right] = 0 $$
(40)

The result of (40) indicates that \( h_{3}^{I} \) and \( h_{4}^{I} \) are uncorrelated and statistically independent. Similarly we can also prove that \( h_{3}^{Q} \) and \( h_{4}^{Q} \) are also uncorrelated and statistically independent. Since \( E[h_{i}^{I} h_{j}^{Q} ] = 0,i = 1,2; j = 1,2 \) we further can prove \( E[h_{i}^{I} h_{j}^{Q} ] = 0,i = 3,4; j = 3,4 \). \( E[h_{i}^{I} h_{j}^{Q} ] = 0,i = 3,4; j = 3,4 \), indicates that channel \( h_{3} \) and \( h_{4} \) are statistically independent. So the above transformation converts dual correlated Nakagami-n fading channel \( h_{1} \) and \( h_{2} \) into two independent fading channels, \( h_{3} \) and \( h_{4} \).

Without loss of generality we further assume \( h_{D}^{{I_{2} }} = \beta h_{D}^{{I_{1} }} \) and \( h_{D}^{{Q_{2} }} = \beta h_{D}^{{Q_{1} }} \). Then the mean values of \( h_{3}^{I} \), \( h_{3}^{Q} \),\( h_{4}^{I} \) and \( h_{4}^{Q} \) are derived as

$$ E\left[ {h_{3}^{I} } \right] = \frac{\sqrt 2 }{2}\left( {1 + \beta } \right)h_{D}^{{I_{1} }} $$
(41a)
$$ E\left[ {h_{3}^{Q} } \right] = \frac{\sqrt 2 }{2}\left( {1 + \beta } \right)h_{D}^{{Q_{1} }} $$
(41b)
$$ E\left[ {h_{4}^{I} } \right] = \frac{\sqrt 2 }{2}\left( {\beta - 1} \right)h_{D}^{{I_{1} }} $$
(41c)
$$ E\left[ {h_{4}^{Q} } \right] = \frac{\sqrt 2 }{2}\left( {\beta - 1} \right)h_{D}^{{Q_{1} }} $$
(41d)

The variances of \( h_{3}^{I} \), \( h_{3}^{Q} \), \( h_{4}^{I} \), and \( h_{4}^{Q} \) are also derived as

$$ E\left[ {\left( {h_{3}^{I} } \right)^{2} } \right] = E_{s} \left( {1 + \rho } \right)\sigma^{2} + 0.5\left( {1 + \beta } \right)^{2} E_{s} \left( {h_{D}^{{I_{1} }} } \right)^{2} $$
(42a)
$$ E\left[ {\left( {h_{3}^{Q} } \right)^{2} } \right] = E_{s} \left( {1 + \rho } \right)\sigma^{2} + 0.5\left( {1 + \beta } \right)^{2} E_{s} \left( {h_{D}^{{Q_{1} }} } \right)^{2} $$
(42b)
$$ E\left[ {\left( {h_{4}^{I} } \right)^{2} } \right] = E_{s} \left( {1 - \rho } \right)\sigma^{2} + 0.5\left( {1 - \beta } \right)^{2} E_{s} \left( {h_{D}^{{I_{1} }} } \right)^{2} $$
(42c)
$$ E\left[ {\left( {h_{4}^{Q} } \right)^{2} } \right] = E_{s} \left( {1 - \rho } \right)\sigma^{2} + 0.5\left( {1 - \beta } \right)^{2} E_{s} \left( {h_{D}^{{Q_{1} }} } \right)^{2} $$
(42d)

In general, the results of (41a)–(42d) indicate that the transformation proposed in [25] converts dual correlated Nakagami-n fading channel \( h_{1} \) and \( h_{2} \) with parameter \( K_{1} \) and \( K_{2} \) into two independent Nakagami-n fading channel \( h_{3} \) and \( h_{4} \) with \( K_{3} \) and \( K_{4} \) which are given by

$$ K_{3} = \frac{{\left( {1 + \beta } \right)^{2} }}{{4\left( {1 + \rho } \right)\sigma^{2} }}\left[ {\left( {h_{D}^{{I_{1} }} } \right)^{2} + \left( {h_{D}^{{Q_{1} }} } \right)^{2} } \right] $$
(43a)
$$ K_{4} = \frac{{\left( {1 - \beta } \right)^{2} }}{{4\left( {1 - \rho } \right)\sigma^{2} }}\left[ {\left( {h_{D}^{{I_{1} }} } \right)^{2} + \left( {h_{D}^{{Q_{1} }} } \right)^{2} } \right] $$
(43b)

Typically when \( h_{D}^{{I_{1} }} = h_{D}^{{I_{2} }} \) and \( h_{D}^{{Q_{1} }} = h_{D}^{{Q_{2} }} \) \( (\beta = 1) \) the transformation converts dual correlated Nakagami-n fading channels with equal parameter \( K_{1} = K_{2} \) into two independent fading channels, one is Rayleigh fading channel \( (K_{4} = 0) \), another still is Nakagami-n with parameter \( K_{3} \) which is given by

$$ K_{3} = \frac{{\left( {h_{D}^{{I_{1} }} } \right)^{2} + \left( {h_{D}^{{Q_{1} }} } \right)^{2} }}{{\left( {1 + \rho } \right)\sigma^{2} }} $$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamdar, M.W., Xu, H. Performance Analysis of Cross QAM with MRC Over Dual Correlated Nakagami-m, -n, and -q Channels. Wireless Pers Commun 84, 3015–3030 (2015). https://doi.org/10.1007/s11277-015-2780-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2780-9

Keywords

Navigation