Skip to main content
Log in

A Simple but Effective Collision and Error Aware Adaptive Back-Off Mechanism to Improve the Performance of IEEE 802.11 DCF in Error-Prone Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In a realistic wireless network, all the unsuccessful transmission attempts are not due to packet collisions only. But the transmission errors also played an important role because of the non-ideal channel conditions. In addition, non-saturation condition for a contending station is also a realistic phenomenon. It is now very established fact that performance of the distributed coordination function (DCF) significantly degrades in non-ideal situations due to the traditionally fixed behavior of its binary exponential back-off (BEB) mechanism. To enhance the performance of the DCF, many adaptive back-off mechanisms have been suggested. However, these mechanisms still suffer due to inefficient adaptation procedure followed by them. In order to overcome such inefficiencies, in this paper, we propose an effective contention window (CW) and contention slot selection (CSS) mechanism, called Collision and Error Aware Adaptive Back-off (CEAAB), to improve the performance of IEEE 802.11 DCF. In the proposed CEAAB mechanism, CW and CSS strategies differ from the BEB back-off mechanism to adopt the network situation. A Markov chain based analytical model is developed for the proposed CEAAB mechanism to derive the performance metrics-throughput and delay. Simulation results illustrate that the CEAAB mechanism outperforms the earlier proposed mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, 1997. P802.11.

  2. Bianchi, G. (1998). IEEE 802.11—Saturation throughput analysis. IEEE Communications Letters, 2(12), 318–320.

    Article  Google Scholar 

  3. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  4. Ziouva, E., & Antonakopoulos, T. (2002). CSMA/CA performance under high traffic conditions: Throughput and delay analysis. Computer Communications, 25(3), 313–321.

    Article  Google Scholar 

  5. Wu, H., Peng, Y., Long, K., Cheng, S., Ma, J. (2002). Performance of reliable transport protocol over IEEE 802.11 wireless LAN: Analysis and enhancement. In Proceedings of the 21st annual joint conference of the IEEE computer and communications societies (INFOCOM 2002), New York, NY, USA, vol. 2 (pp. 599–607).

  6. Wu, C. M., Hou, T. H., Leou, M. L., Liaw, Y. C., & Chan, M. C. (2010). Adaptive back-off scheme for ad-hoc networks based on IEEE 802.11. International Journal of Communication Systems, 23(12), 1632–1650.

    Article  Google Scholar 

  7. Vishnevsky, V. M., & Lyakhov, A. I. (2002). IEEE 802.11 Wireless LAN: Saturation throughput analysis with seizing effect consideration. Cluster Computing, 5(2), 133–144.

    Article  Google Scholar 

  8. Ke, C. H., Wei, C. C., Lin, K. W., & Ding, J. W. (2011). A smart exponential-threshold-linear back-off mechanism for IEEE WLANs. International Journal of Communication Systems, 24(8), 1033–1048.

    Article  Google Scholar 

  9. Yun, L., Ke-Ping, L., Wei-Liang, Z., & Feng-Rui, Y. (2005). RWBO (pd, w): A novel back-off algorithm for IEEE 802.11 DCF. Journal Computer Science and Technology, 20(2), 276–281.

    Article  Google Scholar 

  10. Yun, L., Ke-Ping, L., Wei- Liang, Z., & Qian-Bin, C. (2006). A novel random back-off algorithm to enhance the performance of IEEE 802.11 DCF. Wireless Personal Communications, 36(1), 29–44.

    Article  Google Scholar 

  11. Rajagopalan, N., & Mala, C. (2012). An efficient and dynamic back-off algorithm for IEEE 802.11 networks. International Journal of System Assurance Engineering and Management, 3(2), 73–83.

    Article  Google Scholar 

  12. Pudasaini, S., Kang, M., Shin, S., & Copeland, J. A. (2010). COMIC: Intelligent contention window control for distributed medium access. IEEE Communications Letters, 14(7), 656–658.

    Article  Google Scholar 

  13. YuZhong, C., CaiHong, K., YanHui, G., Feng, L. (2004). Performance analysis and improvement of IEEE 802.11 WLAN. In Proceedings of 10th Asia-Pacific conference on communications and 5th international symposium on multi-dimensional mobile communications, 1 (pp. 147–151).

  14. Chen, W. T. (2008). An effective medium contention method to improve the performance of IEEE 802.11. Wireless Networks, 14(6), 769–776.

    Article  Google Scholar 

  15. Chatzimisios, P., Vitsas, V., Boucouvalas, A. C., & Tsoulfa, M. (2007). Achieving performance enhancement in IEEE 802.11 WLANs by using the DIDD back-off mechanism. International Journal of Communication Systems, 20(1), 23–41.

    Article  Google Scholar 

  16. Malone, D., Duffy, K., & Leith, D. J. (2005). Modelling the 802.11 distributed coordination function in non-saturated conditions. IEEE Communications Letters, 9(8), 715–717.

    Article  Google Scholar 

  17. Robertazzi, T. G. (2000). Computer Networks and Systems. New York: Springer.

    Book  Google Scholar 

  18. Kuo, C. Y., Huang, Y. H., & Lin, K. C. (2012). Performance enhancement of IEEE 802.11 DCF using novel back-off algorithm. EURASIP Journal on Wireless Communications and Networking.,. doi:10.1186/1687-14992012-274.

    Google Scholar 

  19. Anouar, H., & Bonnet, C. (2007). Optimal constant window back-off scheme for IEEE 802.11 DCF in single-hop wireless networks under finite load conditions. Wireless Personal Communications,. doi:10.1007/s11277-007-9329-5.

    Google Scholar 

  20. Malone, D., Duffy, K., & Leith, D. J. (2007). Modelling the 802.11 distributed coordination function in non-saturated heterogeneous conditions. IEEE ACM Transactions Networking, 15(1), 159–172.

    Article  Google Scholar 

  21. Chun, S., Xianhua, D., Pingyuan, L., & Han, Z. (2012). Adaptive access mechanism with optimal contention window based on node number estimation using multiple thresholds. IEEE Transactions on Wireless Communications, 12(6), 2046–2055.

    Article  Google Scholar 

  22. Hong, K., Lee, S., Kim, K., & Kim, Y. (2012). Channel condition based contention window adaptation in IEEE 802.11 WLANs. IEEE Transactions on Communications, 60(2), 469–478.

    Article  MathSciNet  Google Scholar 

  23. Kim, S. M., & Cho, Y. J. (2006). A distributed collision resolution scheme for improving the performance in wireless LANs. Computer Networks, 50(3), 289–300.

    Article  MATH  Google Scholar 

  24. Li, B., & Battiti, R. (2007). Achieving optimal performance in IEEE 802.11 wireless LANs with the combination of link adaptation and adaptive back-off. Computer Networks, 51(6), 1574–1600.

    Article  Google Scholar 

  25. Tuysuz, M. F., & Mantar, H. A. (2014). A Beacon-Based Collision-Free Channel Access Scheme for IEEE 802.11 WLANs. Wireless Personal Communications, 75(1), 155–177.

    Article  Google Scholar 

  26. Chatzimisios, P., Boucouvalas, A. C., & Vitsas, V. (2003). Packet delay analysis of IEEE 802.11 MAC protocol. Electronics Letters, 39(18), 1358–1359.

    Article  Google Scholar 

  27. Pang, Q., Liew, S. C., Lee, J. Y. B., & Leung, V. C. M. (2004). Performance evaluation of an adaptive back-off scheme for WLAN. Wireless Communication and Mobile Computing, 4(8), 867–879.

    Article  Google Scholar 

  28. Tian, G., & Tian, Y. C. (2012). Modelling and performance evaluation of the IEEE 802.11 DCF for real-time control. Computer Networks, 56(1), 435–447.

    Article  Google Scholar 

  29. Pudusaini, S., & Shin, S. (2012). Cross-layer performance analysis of CSMA/iCA based wireless local area network. Wireless Personal Communications, 67(1), 63–77.

    Google Scholar 

  30. Joshi, G. P., Nam, S. Y., & Kim, S. W. (2014). Decentralized predictive MAC protocol for ad hoc cognitive radio networks. Wireless Personal Communications, 74(2), 803–821.

    Article  Google Scholar 

  31. Arif, T. Y., & Sari, R. F. (2013). DCF and EDCA throughput improvement using selective anomalous slot avoidance (SASA). In 19th IEEE conference on networks (ICON 2013), (pp. 1–7).

  32. Maltchanov, D., & Koucheryavy, (2014). Cross-layer modelling of wireless channels: An overview of basic principles. Wireless Personal Communications,. doi:10.1007/s11277-012-0896-8.

    Google Scholar 

  33. Lee, S. Y., Shin, Y. S., Lee, K. W., & Ahn, J. S. (2013). Performance analysis of extended non-overlapping binary exponential back-off algorithm over IEEE 802.15.4. Telecommunication Systems.,. doi:10.1007/s11235-013-9749-3.

    Google Scholar 

  34. Maadani, M., & Moamedi, S. A. (2013). A simple and comprehensive saturation packet delay model for wireless industrial networks. Wireless Personal Communications,. doi:10.1007/s11277-013-1510-4.

    Google Scholar 

  35. Maadani, M., & Moamedi, S. A. (2013). A simple and closed form access delay model for reliable IEEE 802.11 based wireless industrial networks. Wireless Personal Communications,. doi:10.1007/s11277-013-1465-5.

    Google Scholar 

  36. Pang, Q., Liew, S. C., & Leung, C. M. (2005). Design of an effective loss-distinguishable MAC protocol for 802.11 WLAN. IEEE Communications Letters, 9(9), 781–783.

    Article  Google Scholar 

  37. Pang, Q., Liew, S. C., & Leung, C. M. (2006). Improvement of WLAN contention resolution by loss differentiation. IEEE Transactions on Wireless Communications, 5(12), 3605–3615.

    Article  Google Scholar 

  38. Senthilkumar, D., & Krishnan, A. (2011). Enhancement to IEEE 802.11 distributed coordination function to reduce packet re-transmissions under imperfect channel conditions. Wireless Personal Communications,. doi:10.1007/s11277-011-0320-9.

    Google Scholar 

  39. Chatzimisios, P., Boucouvalas, A. C., & Vitsas, V. (2003). Influence of channel BER on IEEE 802.11 DCF. Electronic Letters, 39(23), 1687–1689.

    Article  Google Scholar 

  40. Ni, Q., Li, T., Turletti, T., & Xiao, Y. (2005). Saturation throughput analysis of error-prone 802.11 wireless networks. Wireless Communications and Mobile Computing, 5(8), 945–956.

    Article  Google Scholar 

  41. Zeng, Y., Lu, K., Wu, D., & Fang, Y. (2006). Performance analysis of IEEE 802.11 DCF in imperfect channels. IEEE Transactions on Vehicular Technology, 55(5), 1648–1656.

    Article  Google Scholar 

  42. Lykahov, A., & Vishnevsky, V. (2005). Comprehensive study of 802.11 DCF and its modification in the presence of noise. Wireless Networks, 11, 729–740.

    Article  Google Scholar 

  43. Lopez-Aguilera, E., Casademont, J., & Villegas, E. G. (2011). A study on the influence of transmission errors on WLAN IEEE 802.11 MAC performance. Wireless Communications and Mobile Computing, 11(10), 1376–1391.

    Article  Google Scholar 

  44. Chen, H. (2011). Revisit of the Markov model of IEEE 802.11 DCF for an error prone channel. IEEE Communications Letters, 15(12), 1278–1280.

    Article  Google Scholar 

  45. Peng, X., Jiang, L., & Xu, G. (2010). Performance analysis of RTS/CTS scheme in WLAN with the impact of bit errors. Wireless Communications and Mobile Computing,. doi:10.1002/wcm.1045.

    Google Scholar 

  46. Bachiri, L., Aissani, D., & Bouallouche-Medjkoune, L. (2014). Saturation throughput analysis of the IEEE 802.11 e EDCA network with contention free burst under fading channel. Wireless Personal Communications,. doi:10.1007/s11277-014-1872-2.

    Google Scholar 

  47. Daneshgaran, F., Laddomada, M., Mesiti, F., & Mondin, M. (2008). Unsaturated throughput analysis of IEEE 802.11 in presence of non-ideal transmission channel and capture effects. IEEE Transactions on Wireless Communications, 7(4), 1276–1286.

    Article  Google Scholar 

  48. Daneshgaran, F., Laddomada, M., Mesiti, F., & Mondin, M. (2008). Saturation throughput analysis of IEEE 802.11 in presence of non-ideal transmission channel and capture effects. IEEE Transactions on Wireless Communications, 56(7), 1178–1188.

    Article  Google Scholar 

  49. Senthilkumar, D., & Krishnan, A. (2010). Non-saturation throughput enhancement of IEEE 802.11 b distributed coordination function for heterogeneous traffic under noisy environment. International Journal of Automation and Computing, 7(1), 95–104.

    Article  Google Scholar 

  50. Gottapu, S. B. R., Tatineni, M., & Kumar, M. N. V. S. S. (2013). Performance analysis of collision alleviating distributed coordination function protocol in congested wireless networks: A Markov chain analysis. IET Networks,. doi:10.1049/iet-net.2012.0187.

    Google Scholar 

  51. Sutton, G. J., Liu, R. P., & Collings, I. B. (2013). Modelling IEEE 802.11 DCF heterogeneous networks with rayleigh fading and capture. IEEE Transactions on Communications, 61(8), 3336–3348.

    Article  Google Scholar 

  52. Yazid, M., Bouallouche-Medjkoune, L., Aissani, D., & Ziane-Khodja, L. (2013). Analytical analysis of applying packet fragmentation mechanism on IEEE 802.11 b DCF network in non-ideal channel with infinite load conditions. Wireless Networks. doi: 10.1007/s11276-013-0653-2.

  53. Yazid, M., Bouallouche-Medjkoune, L., Aissani, D., Amrouche, N., & Bakli, K. (2013). Analytical analysis of applying packet fragmentation mechanism on both Basic and RTS/CTS access methods of the IEEE 802.11 b DCF network under imperfect channel and finite load conditions. Wireless Personal Communications,. doi:10.1007/s11277-013-1517-x.

    MATH  Google Scholar 

  54. Mahasukhon, P., Hempel, M., Sarif, H., Zhou, T., Ci, S., Chen, H.-H. (2007). BER analysis of 802.11b networks under mobility. IEEE international conference on communications, ICC’07, PP. 4722–4727.

  55. Gharehajlu, M. M., Darmani, Y., & Zokaei, S. (2014). Delay analysis of IEEE 802.11 based Ad-Hoc network under unsaturated condition. Wireless Personal Communications,. doi:10.1007/s11277-014-1940-7.

    Google Scholar 

  56. Alabady, S. A., Salleh, M. F. M., & Hasib, A. (2014). Throughput and delay analysis of IEEE 802.11 DCF in the presence of hidden nodes for multi-hop wireless networks. Wireless Personal Communications,. doi:10.1007/s11277-014-9.

    Google Scholar 

  57. Zho, Q., Tsang, D. H. K., & Sakurai, T. (2011). Modelling non-saturated IEEE 802.11 DCF networks utilizing an arbitrary buffer size. IEEE Transactions on Mobile Computing, 10(9), 1248–1263.

    Article  Google Scholar 

Download references

Acknowledgments

The work presented in this paper was supported by CSIR (Council of Scientific and Industrial Research) New Delhi, India, under Grant JRF & SRF- 09/263(0737)/2008-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpendra Patel.

Appendix

Appendix

1.1 Derivation of E[BT wf ]

Equation (44) can be re-written as follows:

$$ \begin{aligned} E\left[ {BT_{wf} } \right] &= \sum\limits_{k = 1}^{{W_{0} - 1}} {k \times \pi_{0,k} } + \sum\limits_{k = 1}^{{W_{i} - 1}} {k \times \pi_{0,k} } + \sum\limits_{k = 1}^{{W_{m} - 1}} {k \times \pi_{0,k} } \\ &= {\rm M} + {\rm N} + {\rm O} \\ \end{aligned} $$
(44a)

The values of M, N and O are derived as following:

$$ \begin{aligned} {\rm M} = & \sum\limits_{k = 1}^{{W_{0} - 1}} {k \cdot \pi_{0,k} } \\ = & \sum\limits_{k = 1}^{{W_{0} - 1}} {k \cdot \left[ {\frac{{\pi_{0,0} }}{{\left( {1 - P_{tr} } \right)}}\sum\limits_{j = k}^{{W_{0} - 1}} {\left\{ {\varPsi \cdot F_{0} \left( j \right) + P_{e} \left( {1 - P_{c} } \right) \cdot G_{0} \left( j \right)} \right\}} } \right]} \\ = & \frac{{\pi_{0,0} }}{{W_{0} \left( {1 - P_{tr} } \right)}}\left[ {\sum\limits_{k = 1}^{{W_{0} - 1}} {\left\{ {k \cdot \sum\limits_{j = k}^{{W_{0} - 1}} {\left\{ {\varPsi + P_{e} \left( {1 - P_{c} } \right)} \right\}} } \right\}} } \right] \\ = & \frac{{\pi_{0,0} }}{{6 \cdot \left( {1 - P_{tr} } \right)}}\left\{ {\left( {W_{0} } \right)^{2} - 1} \right\} \cdot \left\{ {\varPsi + \xi } \right\} \\ \end{aligned} $$
(44b)

The value of N can be derived as follows:

$$ \begin{aligned} {\rm N} = & \sum\limits_{i = 1}^{m - 1} {\sum\limits_{k = 1}^{{W_{i} - 1}} {k \cdot \pi_{i,k} } } \\ = & \sum\limits_{i = 1}^{m - 1} {\left[ {\frac{{\left( {P_{f} } \right)^{i - 1} \cdot \pi_{0,0} }}{{\left( {1 - P_{tr} } \right)}}\left\{ {\sum\limits_{k = 1}^{{W_{i} - 1}} {\sum\limits_{j = k}^{{W_{i} - 1}} {\left[ {k \cdot \left\{ {P_{c} \cdot F_{i} \left( j \right) + P_{e} \left( {1 - P_{c} } \right)P_{f} \cdot G_{i} \left( j \right)} \right\}} \right]} } } \right\}} \right]} \\ = & \sum\limits_{i = 1}^{m - 1} {\left[ {\frac{{\left( {P_{f} } \right)^{i - 1} \cdot \pi_{0,0} }}{{\left( {1 - P_{tr} } \right)}}\left\{ {\sum\limits_{k = 1}^{{W_{i} - 1}} {\left[ {kP_{c} \left\{ {1 - \sum\limits_{j = 0}^{k - 1} {F_{i} \left( j \right)} } \right\} + kP_{e} \left( {1 - P_{c} } \right)P_{f} \left\{ {1 - \sum\limits_{j = 0}^{k - 1} {G_{i} \left( j \right)} } \right\}} \right]} } \right\}} \right]} \\ = & \frac{{\pi_{0,0} }}{{\left( {1 - P_{tr} } \right)}}\sum\limits_{i = 1}^{m - 1} {\left[ {\left( {P_{f} } \right)^{i - 1} \left\{ {P_{c} \cdot \varPhi_{1} + P_{e} \left( {1 - P_{c} } \right)P_{f} \cdot \varPhi_{2} } \right\}} \right]} \\ \end{aligned} $$
(44c)

where,

$$ \varPhi_{1} = \sum\limits_{k = 1}^{{W_{i} - 1}} {\left[ {k \cdot \left\{ {1 - \sum\limits_{j = 0}^{k - 1} {F_{i} \left( j \right)} } \right\}} \right]} $$
(44d)
$$ \varPhi_{2} = \sum\limits_{k = 1}^{{W_{i} - 1}} {\left[ {k \cdot \left\{ {1 - \sum\limits_{j = 0}^{k - 1} {G_{i} \left( j \right)} } \right\}} \right]} $$
(44e)

From Eq. (44d), we have:

$$ \begin{aligned} \varPhi_{1} = & \sum\limits_{k = 1}^{{W_{i} - 1}} {\left[ {k \cdot \left\{ {1 - \sum\limits_{j = 0}^{k - 1} {F_{i} \left( j \right)} } \right\}} \right]} \\ = & \sum\limits_{k = 1}^{{W_{i} /2}} {\left[ {k \cdot \left\{ {1 - \sum\limits_{j = 0}^{k - 1} {F_{i} \left( j \right)} } \right\}} \right]} + \sum\limits_{{k = \frac{{W_{i} }}{2} + 1}}^{{W_{i} - 1}} {\left[ {k \cdot \left\{ {1 - \sum\limits_{j = 0}^{k - 1} {F_{i} \left( j \right)} } \right\}} \right]} \\ = & \sum\limits_{k = 1}^{{\frac{{W_{i} }}{2}}} k - \frac{1}{{2^{i} W_{i} }} \cdot \sum\limits_{k = 1}^{{\frac{{W_{i} }}{2}}} {\left( {k^{2} } \right)} + \left( {1 - \frac{1}{{2^{i + 1} }}} \right) \cdot \varPhi_{11} - \frac{2}{{W_{i} }}\left( {1 - \frac{1}{{2^{i + 1} }}} \right)\varPhi_{12} \\ \end{aligned} $$
(44f)

where,

$$ \begin{aligned} \varPhi_{11} = & \sum\limits_{k = 1}^{{\frac{{W_{i} }}{2} - 1}} {\left( {\frac{{W_{i} }}{2} + k} \right)} \\ = & \frac{3}{8}W_{i} \left( {W_{i} - 2} \right) \\ \end{aligned} $$
(44g)

and

$$ \begin{aligned} \varPhi_{12} = & \sum\limits_{{k = \frac{{W_{i} }}{2} + 1}}^{{W_{i} - 1}} {k \cdot \left( {k - \frac{{W_{i} }}{2}} \right)} \\ = & \frac{1}{48}W_{i} \left( {W_{i} - 2} \right)\left( {5W_{i} - 2} \right) \\ \end{aligned} $$
(44h)

From Eq. (44f44h), we get the value of Φ 1 as given below:

$$ \varPhi_{1} = \frac{7}{24}\left( {W_{i} } \right)^{2} - \frac{1}{{2^{i + 3} }}\left( {W_{i} } \right)^{2} - \frac{1}{6} $$
(44i)

From Eq. (44e), we have:

$$ \begin{aligned} \varPhi_{2} = & \sum\limits_{k = 1}^{{W_{i} - 1}} {\left[ {k \cdot \left\{ {1 - \sum\limits_{j = 0}^{k - 1} {G_{i} \left( j \right)} } \right\}} \right]} \\ = & \sum\limits_{k = 1}^{{W_{i} /2}} {\left[ {k \cdot \left\{ {1 - \sum\limits_{j = 0}^{k - 1} {G_{i} \left( j \right)} } \right\}} \right]} + \sum\limits_{{k = \frac{{W_{i} }}{2} + 1}}^{{W_{i} - 1}} {\left[ {k \cdot \left\{ {1 - \sum\limits_{j = 0}^{k - 1} {G_{i} \left( j \right)} } \right\}} \right]} \\ = & \sum\limits_{k = 1}^{{\frac{{W_{i} }}{2}}} k - \frac{1}{{W_{i} }}\left( {2 - \frac{1}{{2^{i} }}} \right) \cdot \sum\limits_{k = 1}^{{\frac{{W_{i} }}{2}}} {\left( {k^{2} } \right)} + \frac{1}{{2^{i + 1} }} \cdot \varPhi_{11} - \frac{1}{{2^{i} W_{i} }}\varPhi_{12} \\ \end{aligned} $$
(44j)

From Eqs. (44g, 44h, 44j), we get the value of Φ 2 as given below:

$$ \varPhi_{2} = \frac{1}{24}\left( {W_{i} } \right)^{2} + \frac{1}{{2^{i + 3} }}\left( {W_{i} } \right)^{2} - \frac{1}{6} $$
(44k)

Putting the values of Φ 1 and Φ 2 into Eq. (44c), we get the value of N as given below:

$$ \begin{aligned} {\rm N} = & \frac{{\pi_{0,0} }}{{\left( {1 - P_{tr} } \right)}}\sum\limits_{i = 1}^{m - 1} {\left( {P_{f} } \right)}^{i} \left[ {\left\{ {7\theta + \xi } \right\}\frac{{\left( {W_{i} } \right)^{2} }}{24} + \left\{ {\xi - \theta } \right\}\frac{{\left( {W_{i} } \right)^{2} }}{{2^{i + 3} }} - \frac{1}{6}\left\{ {\theta + \xi } \right\}} \right] \\ = & \frac{{\pi_{0,0} }}{{\left( {1 - P_{tr} } \right)}} \cdot \left[ \begin{gathered} \frac{1}{24}\left\{ {7\theta + \xi } \right\} \cdot \left( {W_{0} } \right)^{2} \cdot \frac{{1 - \left( {4P_{f} } \right)^{m - 1} }}{{1 - 4P_{f} }} \hfill \\ + \frac{1}{8}\left\{ {\xi - \theta } \right\} \cdot \left( {W_{0} } \right)^{2} \cdot \frac{{1 - \left( {2P_{f} } \right)^{m - 1} }}{{1 - 2P_{f} }} \hfill \\ - \frac{1}{6}\left\{ {\theta + \xi } \right\} \cdot \frac{{1 - \left( {P_{f} } \right)^{m - 1} }}{{1 - P_{f} }} \hfill \\ \end{gathered} \right] \\ \end{aligned} $$
(44l)

Finally, the value of O can be derived as follows:

$$ \begin{aligned} O &= \sum\limits_{k = 1}^{{W_{i} - 1}} {k \cdot \pi_{i,k} } \\ &= \frac{{P_{c} \left( {P_{f} } \right)^{m - 1} \cdot \pi_{0,0} }}{{\left( {1 - P_{eq} } \right)\left( {1 - P_{tr} } \right)}}\left\{ {\sum\limits_{k = 1}^{{W_{m} - 1}} {k \cdot \sum\limits_{j = k}^{{W_{m} - 1}} {\left[ {\left\{ {\left( {1 + P_{c} - P_{eq} } \right) \cdot F_{m} \left( j \right) + P_{e} \left( {1 - P_{c} } \right) \cdot G_{m} \left( j \right)} \right\}} \right]} } } \right\} \\ &= \frac{{P_{c} \left( {P_{f} } \right)^{m - 1} \cdot \pi_{0,0} }}{{\left( {1 - P_{eq} } \right)\left( {1 - P_{tr} } \right)}}\left\{ {\sum\limits_{k = 1}^{Wm - 1} {\left[ {k\left( {1 + P_{c} - P_{eq} } \right)\left\{ {1 - \sum\limits_{j = 0}^{k - 1} {F_{i} \left( j \right)} } \right\} + kP_{e} \left( {1 - P_{c} } \right)\left\{ {1 - \sum\limits_{j = 0}^{k - 1} {G_{i} \left( j \right)} } \right\}} \right]} } \right\} \\ &= \frac{{P_{c} \left( {P_{f} } \right)^{m - 1} \cdot \pi_{0,0} }}{{\left( {1 - P_{eq} } \right)\left( {1 - P_{tr} } \right)}}\left[ {\left( {1 + P_{c} - P_{eq} } \right)\varPhi_{3} + P_{e} \left( {1 - P_{c} } \right)\varPhi_{4} } \right] \\ \end{aligned} $$
(44m)

where,

$$ \begin{aligned} \varPhi_{3} = & \sum\limits_{k = 1}^{{W_{m} - 1}} {k \cdot \left[ {1 - \sum\limits_{j = 0}^{k - 1} {F_{m} \left( j \right)} } \right]} \\ = & \frac{7}{24}\left( {W_{m} } \right)^{2} - \frac{1}{{2^{m + 3} }}\left( {W_{m} } \right)^{2} - \frac{1}{6} \\ \end{aligned} $$
(44n)

and,

$$ \begin{aligned} \varPhi_{4} &= \sum\limits_{k = 1}^{{W_{m} - 1}} {k \cdot \left[ {1 - \sum\limits_{j = 0}^{k - 1} {G_{m} \left( j \right)} } \right]} \\ &= \frac{1}{24}\left( {W_{m} } \right)^{2} + \frac{1}{{2^{m + 3} }}\left( {W_{m} } \right)^{2} - \frac{1}{6} \hfill \\ \end{aligned} $$
(44o)

From Eqs. (44m44o), we get the value of O as given below:

$$ O = \frac{{P{}_{c}\left( {P_{f} } \right)^{m - 1} \cdot \pi_{0,0} }}{{\left( {1 - P_{eq} } \right) \cdot \left( {1 - P_{tr} } \right)}} \cdot \left[ \begin{aligned}& \frac{{2^{2m} }}{24}\left\{ {7\theta + \xi } \right\} \cdot \left( {W_{0} } \right)^{2} \hfill \\ &+ \frac{{2^{m} }}{8}\left\{ {\xi - \theta } \right\} \cdot \left( {W_{0} } \right)^{2} \hfill \\ &- \frac{1}{6}\left\{ {\theta + \xi } \right\} \hfill \\ \end{aligned} \right] $$
(44p)

Putting the respective values of M, N and O from Eqs. (44b), (44l) and (44p) into the Eq. (44a), the required value of E[BT wf ] can be given by Eq. (45).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Lobiyal, D.K. A Simple but Effective Collision and Error Aware Adaptive Back-Off Mechanism to Improve the Performance of IEEE 802.11 DCF in Error-Prone Environment. Wireless Pers Commun 83, 1477–1518 (2015). https://doi.org/10.1007/s11277-015-2460-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2460-9

Keywords

Navigation