Skip to main content
Log in

A V2I-Based Real-Time Traffic Density Estimation System in Urban Scenarios

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The number of vehicles in our roads is drastically increasing, especially in developing countries. In addition, these vehicles tend to be concentrated in urban areas which present a large population. Since traffic jams have important and mostly negative consequences, such as increasing travel time, fuel consumption, and air pollution, governments are making efforts to alleviate the increasing traffic pressure, being vehicular density one of the main metrics used for assessing the road traffic conditions. However, vehicle density is highly variable in time and space, making it difficult to be estimated accurately. In this paper, we present a solution to estimate the density of vehicles in urban scenarios. Our proposal, that has been specially designed for vehicular networks, allows intelligent transportation systems to continuously estimate vehicular density by accounting for the number of beacons received per road side unit (RSU), and also considering the roadmap topology where the RSUs are located. Using V2I communications, we are able to estimate the traffic density in a certain area, which represents a key parameter to perform efficient traffic redirection, thereby reducing the vehicles’ travel time and avoiding traffic jams. Simulation results reveal that, unlike previous proposals, our approach accurately estimates the vehicular density in all the scenarios, presenting an average relative error is of only 3.04 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.who.int.

References

  1. Stanica, R., Chaput, E., & Beylot, A. (2011). Local density estimation for contention window adaptation in vehicular networks. In IEEE 22nd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 730–734).

  2. Tyagi, V., Kalyanaraman, S., & Krishnapuram, R. (2012). Vehicular traffic density state estimation based on cumulative road acoustics. IEEE Transactions on Intelligent Transportation Systems, 13(3), 1156–1166.

    Article  Google Scholar 

  3. Tan, E., & Chen, J. (2007). Vehicular traffic density estimation via statistical methods with automated state learning. In IEEE conference on advanced video and signal based surveillance (AVSS) (pp. 164–169).

  4. Dias, J. A., Rodrigues, J. J., & Zhou, L. (2013). Performance evaluation of cooperative strategies for vehicular delay-tolerant networks. Transactions on Emerging Telecommunications Technologies. doi:10.1002/ett.2683

  5. Chou, L.-D., Yang, J.-Y., Hsieh, Y.-C., Chang, D.-C., & Tung, C.-F. (2011). Intersection-based routing protocol for VANETs. Wireless Personal Communications, 60(1), 105–124.

    Article  Google Scholar 

  6. Fogue, M., Garrido, P., Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2013). An adaptive system based on roadmap profiling to enhance warning message dissemination in VANETs. IEEE/ACM Transactions on Networking, 21(3), 883–895.

    Article  Google Scholar 

  7. Soldo, F., Lo Cigno, R., & Gerla, M. (2008). Cooperative synchronous broadcasting in infrastructure-to-vehicles networks. In Fifth annual conference on wireless on demand network systems and services (WONS) (pp. 125–132).

  8. Vales-Alonso, J., Vicente-Carrasco, F., & Alcaraz, J. (2011). Optimal configuration of roadside beacons in V2I communications. Computer Networks, 55(14), 3142–3153.

    Article  Google Scholar 

  9. Fazio, P., De Rango, F., & Lupia, A. (2013). A new application for enhancing VANET services in emergency situations using the WAVE/802.11p standard. In IFIP wireless days (WD) (pp. 1–3).

  10. Ghafoor, K., Lloret, J., Bakar, K., Sadiq, A., & Mussa, S. (2013). Beaconing approaches in vehicular ad hoc networks: A survey. Wireless Personal Communications, 73(3), 885–912.

    Article  Google Scholar 

  11. Martinez, F. J., Cano, J.-C., Calafate, C. T., Manzoni, P., & Barrios, J. M. (2009). Assessing the feasibility of a VANET. In ACM workshop on performance monitoring, measurement and evaluation of heterogeneous wireless and wired networks (PM2HW2N,. 2009. held with MSWiM) (pp. 39–45). New York, NY, USA: ACM.

  12. Deng, D.-J., Chen, H.-C., Chao, H.-C., & Huang, Y.-M. (2011). A collision alleviation scheme for IEEE 802.11p VANETs. Wireless Personal Communications, 56(3), 371–383.

    Article  Google Scholar 

  13. Santa, J., Toledo-Moreo, R., Zamora-Izquierdo, M. A., Ubeda, B., & Gomez-Skarmeta, A. F. (2010). An analysis of communication and navigation issues in collision avoidance support systems. Transportation Research Part C: Emerging Technologies, 18(3), 351–366.

    Article  Google Scholar 

  14. Kumar, N., Chilamkurti, N., & Rodrigues, J. J. (2013). Learning automata-based opportunistic data aggregation and forwarding scheme for alert generation in vehicular ad hoc networks. Computer Communications, 39, 22–32. doi:10.1016/j.comcom.2013.09.005.

    Article  Google Scholar 

  15. Galaviz-Mosqueda, G. A., Aquino-Santos, R., Villarreal-Reyes, S., Rivera-Rodriguez, R., Villaseñor Gonzalez, L., & Edwards, A. (2012). Reliable freestanding position-based routing in highway scenarios. Sensors, 12(11), 14262–14291.

    Article  Google Scholar 

  16. Chen, P.-Y., Liu, J.-W., & Chen, W.-T. (2010). A fuel-saving and pollution-reducing dynamic taxi-sharing protocol in VANETs. In IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall) (pp. 1–5).

  17. Bekris, K., Tsianos, K., & Kavraki, L. (2009). Safe and distributed kinodynamic replanning for vehicular networks. Mobile Networks and Applications, 14(3), 292–308.

    Article  Google Scholar 

  18. Gonzalez, A. J., Alcober, J., de Pozuelo, R. M., Pinyol, F., & Ghafoor, K. Z. (2011). Context-aware multimedia service composition using quality assessment. In IEEE international conference on multimedia and expo (ICME) (pp. 1–6).

  19. Maslekar, N., Boussedjra, M., Mouzna, J., & Labiod, H. (2011). A stable clustering algorithm for efficiency applications in VANETs. In 7th International wireless communications and mobile computing conference (IWCMC) (pp. 1188–1193).

  20. Shirani, R., Hendessi, F., & Gulliver, T. (2009). Store-carry-forward message dissemination in vehicular ad-hoc networks with local density estimation. In IEEE 70th Vehicular Technology Conference Fall (VTC 2009-Fall) (pp. 1–6).

  21. Balcilar, M., & Sonmez, A. (2008). Extracting vehicle density from background estimation using Kalman filter. In 23rd International symposium on computer and information sciences (ISCIS ’08) (pp. 1–5).

  22. Thakur, G., Hui, P., Ketabdar, H., & Helmy, A. (2011). Spatial and temporal analysis of planet scale vehicular imagery data. In IEEE 11th international conference on data mining workshops (ICDMW) (pp. 905–910).

  23. Sanguesa, J. A., Fogue, M., Garrido, P., Martinez, F. J., Cano, J.-C., Calafate, C., et al. (2013). An infrastructureless approach to estimate vehicular density in urban environments. Sensors, 13, 2399–2406.

    Article  Google Scholar 

  24. Rodrigue, J.-P., & Notteboom, T. (2012). The geography of transport systems. http://people.hofstra.edu/geotrans

  25. Schrank, D., Lomax, T., Turner, S. (2010). TTIs 2010 urban mobility report powered by INRIX traffic data. Texas Transportation Institute, The Texas A&M University System. http://mobility.tamu.edu/ums/

  26. Ye, Z., Limin, J., Guoqiang, C., & Min, G. (2008). Approach and application of transportation state analysis. In Fourth international conference on networked computing and advanced information management (NCM ’08) (Vol. 2, pp. 260–265).

  27. Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent development and applications of SUMO—Simulation of urban mobility. International Journal on Advances in Systems and Measurements, 5(3&4), 128–138.

    Google Scholar 

  28. OpenStreetMap (2012). Collaborative project to create a free editable map of the world. http://www.openstreetmap.org

  29. Martinez, F. J., Fogue, M., Toh, C. K., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2013). Computer simulations of VANETs using realistic city topologies. Wireless Personal Communications, 69(2), 639–663.

    Article  Google Scholar 

  30. Fogue, M., Garrido, P., Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2012). Evaluating the impact of a novel message dissemination scheme for vehicular networks using real maps. Transportation Research Part C: Emerging Technologies, 25, 61–80.

    Article  Google Scholar 

  31. Fall, K., & Varadhan, K. (2000). “ns notes and documents,” The VINT Project. UC Berkeley, LBL, USC/ISI, and Xerox PARC. http://www.isi.edu/nsnam/ns/ns-documentation.html

  32. Barrachina, J., Garrido, P., Fogue, M., Martinez, F. J., Cano, J.-C., Calafate, C. T., et al. (2012). D-RSU: A density-based approach for road side unit deployment in urban scenarios. In International workshop on ipv6-based vehicular networks (Vehi6), collocated with the 2012 IEEE intelligent vehicles symposium (pp. 1–6).

  33. Fogue, M., Garrido, P., Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2012). A realistic simulation framework for vehicular networks. In 5th International ICST conference on simulation tools and techniques (SIMUTools 2012) (pp. 37–46). Desenzano, Italy.

  34. Krauss, S., Wagner, P., & Gawron, C. (1997). Metastable states in a microscopic model of traffic flow. Physical Review E, 55(5), 5597–5602.

    Article  Google Scholar 

  35. Barrachina, J., Garrido, P., Fogue, M., Martinez, F. J., Cano, J.-C., Calafate, C. T., et al. (2012). VEACON: A vehicular accident ontology designed to improve safety on the roads. Journal of Network and Computer Applications, 35(6), 1891–1900.

    Article  Google Scholar 

  36. ZunZun. (2012). Online curve fitting and surface fitting web site. http://www.zunzun.com

  37. Anand, R., Vanajakshi, L., & Subramanian, S. (2011). Traffic density estimation under heterogeneous traffic conditions using data fusion. In IEEE intelligent vehicles symposium (IV) (pp. 31–36).

  38. Hattori, Y., Hashimoto, T., & Inoue, S. (1999). A study for the traffic flow control considering the capacity of the road by cellular automaton method. In IEEE international conference on systems, man, and cybernetics (SMC ’99) (Vol. 4, pp. 569–573).

  39. Bedi, P., Mediratta, N., Dhand, S., Sharma, R., & Singhal, A. (2007). Avoiding traffic jam using ant colony optimization—A novel approach. In International conference on computational intelligence and multimedia applications (Vol. 1, pp. 61–67).

  40. Yin, Z., Junli, W., & Huapu, L. (2008). A study on urban traffic congestion dynamic predict method based on advanced fuzzy clustering model. In International conference on computational intelligence and security (CIS ’08) (Vol. 2, pp. 96–100).

Download references

Acknowledgments

This work was partially supported by the Ministerio de Ciencia e Innovación, Spain, under Grant TIN2011-27543-C03-01, and by the Government of Aragón and the European Social Fund (T91 Research Group).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Martinez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrachina, J., Garrido, P., Fogue, M. et al. A V2I-Based Real-Time Traffic Density Estimation System in Urban Scenarios. Wireless Pers Commun 83, 259–280 (2015). https://doi.org/10.1007/s11277-015-2392-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2392-4

Keywords

Navigation