Skip to main content
Log in

Congestion Probabilities in CDMA-Based Networks Supporting Batched Poisson Input Traffic

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We propose a new multirate teletraffic loss model for the calculation of time and call congestion probabilities in CDMA-based networks that accommodate calls of different service-classes. The call arrival process follows a batched Poisson process, which is more “peaked” and “bursty” than the ordinary Poisson process. The call-admission-control policy is based on the partial batch blocking discipline. This policy accepts a part of the batch (one or more calls) and discards the rest, if the available resources are not enough to accept the whole batch. The proposed model takes into account multiple access interference, both the notion of local (soft) and hard blocking, the user’s activity, as well as interference cancellation. Although the analysis of the model does not lead to a product form solution of the steady state probabilities, we show that the call-level performance metrics, time and call congestion probabilities can be efficiently calculated based on approximate but recursive formulas. The accuracy of the proposed formulas are verified through simulation and found to be quite satisfactory. Comparison of the proposed model with that of Poisson input shows the necessity of the new model. We also show the consistency of the new model over changes of its parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The peakedness factor \(z\) is the ratio of the variance over the mean of the number of arrivals; if \(z=1\), the arrival process is Poisson; if \(z<1\), the arrival process is quasi-random; if \(z>1\), the process is more peaked and bursty than Poisson (e.g. overflow traffic).

  2. Hard blocking occurs when the bandwidth requirement of a new call is higher than the available resources of the system. This type of blocking appears in wired networks.

  3. If we assume the existence of perfect power control and the same \(\left( {\frac{{{E_b}}}{{{N_0}}}} \right) \), data rate \(R\), activity factor \(v\) and consequently processing gain \(G\) and total received power \(p\) for all service-classes then Eq. (6) takes the form \({P_{own}}=\frac{{N\left( {{P_{other}} + {P_{noise}}} \right) }}{{(1-\beta )- N(1 - \beta ) + \frac{G}{{\left( {\frac{{{E_b}}}{{{N_0}}}}\right) }}}}\) where \(N\) is the total number of users in the reference cell.

References

  1. Chen, H.-H. (2007). The next generation CDMA technologies. New York: Wiley.

    Book  Google Scholar 

  2. Holma, H., & Toskala, A. (eds.) (2007). W-CDMA for UMTS: HSPA evolution and LTE, 4th edn. Wiley, New York.

  3. Fazel, K., & Kaiser, S. (2008). Multi-carrier and spread spectrum systems: From OFDM and MC-CDMA to LTE and WiMAX, 2nd edn. Wiley, New york.

  4. Li, D. B. (2003). The perspectives of large area synchronous CDMA technology for the fourth-generation mobile radio. IEEE Communications Magazine, 41(3), 114–118.

    Article  Google Scholar 

  5. Varshney, U. (2012). 4G wireless networks, IT professional. IEEE Computer Society, 14(5), 34–39.

    MathSciNet  Google Scholar 

  6. Pinter, S., & Fernando, X. (2010). Estimation and equalization of fiber-wireless uplink for multiuser CDMA 4G networks. IEEE Transactions on Communications, 58(6), 1803–1813.

    Article  Google Scholar 

  7. Patel, S., Malhar, C., & Kapadiya, K. (2012). 5G: Future mobile technology-vision 2020. International Journal of Computer Applications, 54(17), 6–10.

    Article  Google Scholar 

  8. Ross, K. (1995). Multiservice loss models for broadband telecommunication networks. London: Springer.

    Book  MATH  Google Scholar 

  9. Iversen, V., Benetis, V., Ha, N., & Stepanov, S. (2004). Evaluation of multi-service CDMA networks with soft blocking. In Proceedings of the ITC specialist seminar, pp. 223–227, Antwerp, August/September 2004.

  10. Popova, L., & Koch, W. (2006). Analytical performance evaluation of mixed services with variable data rates for the uplink of UMTS. In Proceedings of the ISWCS’06, Valencia, Spain, September 2006.

  11. Iversen, V. (2010). Evaluation of multi-service CDMA networks with soft blocking. In Proceedings of 3rd conference on smart spaces, ruSMART 2010, and 10th international conference, NEW2AN 2010, St. Petersburg, Russia, pp. 160–171, 23–25 August 2010.

  12. Kallos, G., Vassilakis, V., & Logothetis, M. (2011). Call-level performance analysis of a W-CDMA cell with finite population and interference cancellation. European Transactions on Telecommunications, 22(1), 25–30.

    Article  Google Scholar 

  13. Kaufman, J. (1981). Blocking in a shared resource environment. IEEE Transactions on Communications, 29(10), 1474–1481.

    Article  Google Scholar 

  14. Roberts, J. (1981). A service system with heterogeneous user requirements. In G. Pujolle (Ed.), Performance of data communications systems and their applications, North Holland, Amsterdam, pp. 423–431.

  15. Delbrouck, L. (1983). On the steady state distribution in a service facility with different peakedness factors and capacity requirements. IEEE Transactions on Communications, 31(11), 1209–1211.

    Article  Google Scholar 

  16. van Doorn, E., & Panken, F. (1993). Blocking probabilities in a loss system with arrivals in geometrically distributed batches and heterogeneous service requirements. IEEE/ACM Transactions on Networking 1(6), 664–667.

  17. Kaufman, J., & Rege, K. (1996). Blocking in a shared resource environment with batched Poisson arrival processes. Performance Evaluation, 24, 249–263.

  18. Moscholios, M. I., & Logothetis, M. (2010). The Erlang multirate loss model with Batched Poisson arrival processes under the bandwidth reservation policy. Computer Communications, 33(1), S167–S179.

    Article  Google Scholar 

  19. Moscholios, Vardakas, J., Logothetis, M., & Boucouvalas, A. (2012). QoS guarantee in a batched Poisson multirate loss model supporting elastic and adaptive traffic. In Proceedings of IEEE ICC 2012, Ottawa, Canada, 10–15 June 2012.

  20. Moscholios, M. I., Vardakas, J., Logothetis, M., & Boucouvalas, A. (2013). Congestion probabilities in a Batched Poisson multirate loss model supporting elastic and adaptive traffic. Annals of Telecommunications, 68(5), 327–344.

    Article  Google Scholar 

  21. Rosa, C., Sorensen, T., Wigard, J., & Mogensen, R. (2005). Interference cancellation and 4-branch antenna diversity for W-CDMA uplink packet access. In Proceedings of IEEE vehicular technology conference 2005, pp. 1758–1762, 30 May–1 June 2005.

  22. Stasiak, M., Glabowski, M., Wisniewski, A., & Zwierzykowski, P. (2011). Modeling and dimensioning of mobile networks. New York: Wiley.

    Google Scholar 

  23. Hamalainen, S., Holma, H., & Toskala, A. (1996). Capacity evaluation of a cellular CDMA uplink with multiuser detection. In Proceedings of 4th international symposium on spread spectrum techniques and applications, Vol. 1, pp. 339–343.

  24. Akimaru, H., & Kawashima, K. (1999). Teletraffic: Theory and applications, 2nd edn. Berlin: Springer.

  25. Staehle, D., Leibnitz, K., Heck, K., Schröder, B., Weller, A., & Tran-Gia, P. (2002). Approximating the othercell interference distribution inhomogeneous UMTS networks. In Proceedings of IEEE vehicular technology conference 2002, pp. 1640–1644, 6–9 May 2002.

  26. Staehle, D., & Mäder, A. (2003). An analytic approximation of the uplink capacity in a UMTS network with heterogeneous traffic. In Proceedings of the 18th international teletraffic congress (ITC18), Berlin, pp. 81–91, 31 August–5 September 2003.

  27. Simscript III. http://www.simscript.com/. Accessed on November 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Moscholios.

Appendix

Appendix

Proof of Eq. (10).

Substituting Eq. (6) in Eq. (9) we have:

$$\begin{aligned}&\frac{{\frac{{{N_k}\left( {{P_{other}} + {P_{noise}}} \right) }}{{(1 - \beta ) - {N_k}(1 - \beta )+\frac{{{G_k}}}{{{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}}}}}+ {P_{\textit{other}}} + {P_{noise}}}}{{{P_{noise}}}} = \frac{1}{{1 - {\eta _{UL}}}} \Rightarrow \\&\frac{{\frac{{{N_k}{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}\left( {{P_{other}} + {P_{noise}}} \right) }}{{{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}\left[ {(1 - \beta ) - {N_k}(1 - \beta )} \right] + {G_k}}} + {P_{other}} + {P_{noise}}}}{{{P_{noise}}}} = \frac{1}{{1 - {\eta _{UL}}}} \Rightarrow \\&\frac{{\left( {{P_{other}} + {P_{noise}}} \right) \left[ {{N_k}{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k} + {{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}\left[ {(1 - \beta ) - {N_k}(1 - \beta )} \right] + {G_k}} \right] }}{{{P_{noise}}\left[ {{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}\left[ {(1 - \beta ) - {N_k}(1 - \beta )} \right] + {G_k}} \right] }} = \frac{1}{{1 - {\eta _{UL}}}}\mathop \Rightarrow \limits ^{\delta = \frac{{{P_{other}}}}{{{P_{noise}}}}} \\&\left( {\delta + 1} \right) \left( {1 - {\eta _{UL}}} \right) \left[ {{N_k}{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k} + {{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}\left[ {(1 - \beta ) - {N_k}(1 - \beta )} \right] + {G_k}} \right] \\&\quad = \left[ {{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}\left[ {(1 - \beta ) - {N_k}(1 -\beta )} \right] + {G_k}} \right] \Rightarrow \\&{N_k} = \frac{{{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}(1 - \beta ) + {G_k} - \left( {\delta + 1} \right) \left( {1 - {\eta _{ UL}}} \right) \left[ {{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}(1 - \beta ) + {G_k}} \right] }}{{{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}\left( {\delta + 1} \right) \left( {1 - {\eta _{UL}}} \right) \left[ {1 - (1 - \beta )} \right] + {{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}(1 - \beta )}}\Rightarrow \end{aligned}$$
$$\begin{aligned}&{N_k} = \frac{{\left[ {{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}(1 - \beta ) + {G_k}} \right] }}{{{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}}}\frac{{\left[ {1 - \left( {\delta + 1} \right) \left( {1 - {\eta _{UL}}} \right) } \right] }}{{\left[ {\beta \left( {\delta + 1} \right) \left( {1 - {\eta _{UL}}} \right) + (1 - \beta )} \right] }} \Rightarrow \\&{N_k} = \frac{{\left[ {{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}(1 - \beta ) + {G_k}} \right] }}{{{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}}}\frac{{\left[ {{\eta _{UL}}\left( {\delta + 1} \right) - \delta } \right] }}{{\left[ {1 + \beta \left( {\delta - {\eta _{UL}}\delta - {\eta _{UL}}} \right) } \right] }} \end{aligned}$$

or

$$\begin{aligned} {N_k} = \left[ {(1 - \beta ) + \frac{{{G_k}}}{{{{\left( {\frac{{{E_b}}}{{{N_0}}}} \right) }_k}}}} \right] \frac{{\left[ {{\eta _{UL}}\left( {\delta + 1} \right) - \delta } \right] }}{{\left[ {1 - \beta \left( {{\eta _{UL}}(\delta + 1} \right) - \delta )} \right] }}\hbox { which is eq. (10).} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moscholios, I.D., Kallos, G.A., Vassilakis, V.G. et al. Congestion Probabilities in CDMA-Based Networks Supporting Batched Poisson Input Traffic. Wireless Pers Commun 79, 1163–1186 (2014). https://doi.org/10.1007/s11277-014-1923-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1923-8

Keywords

Navigation